46ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 45ed7/3 46ed7/3 47ed7/3 →
Prime factorization 2 × 23
Step size 31.8885¢ 
Octave 38\46ed7/3 (1211.76¢) (→19\23ed7/3)
Twelfth 60\46ed7/3 (1913.31¢) (→30\23ed7/3)
Consistency limit 3
Distinct consistency limit 3

46 equal divisions of 7/3 (abbreviated 46ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 46 equal parts of about 31.9 ¢ each. Each step represents a frequency ratio of (7/3)1/46, or the 46th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 31.9
2 63.8 28/27, 30/29
3 95.7
4 127.6
5 159.4 11/10
6 191.3 19/17, 29/26
7 223.2
8 255.1 22/19
9 287 13/11, 20/17
10 318.9
11 350.8
12 382.7
13 414.6 19/15
14 446.4 22/17
15 478.3 29/22
16 510.2
17 542.1 15/11, 26/19
18 574
19 605.9
20 637.8 29/20
21 669.7
22 701.5 3/2
23 733.4 26/17, 29/19
24 765.3 14/9
25 797.2
26 829.1
27 861
28 892.9
29 924.8 17/10, 29/17
30 956.7 26/15
31 988.5 23/13, 30/17
32 1020.4
33 1052.3
34 1084.2
35 1116.1 19/10
36 1148
37 1179.9
38 1211.8
39 1243.7
40 1275.5 23/11
41 1307.4
42 1339.3
43 1371.2
44 1403.1 9/4
45 1435
46 1466.9 7/3

Harmonics

Approximation of harmonics in 46ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +11.8 +11.4 -8.4 -12.0 -8.8 +11.4 +3.4 -9.2 -0.3 -5.8 +3.0
Relative (%) +36.9 +35.6 -26.2 -37.7 -27.5 +35.6 +10.7 -28.8 -0.8 -18.2 +9.4
Steps
(reduced)
38
(38)
60
(14)
75
(29)
87
(41)
97
(5)
106
(14)
113
(21)
119
(27)
125
(33)
130
(38)
135
(43)
Approximation of harmonics in 46ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -8.0 -8.8 -0.7 +15.2 +5.9 +2.6 +4.6 +11.5 -9.2 +5.9 -7.2
Relative (%) -25.2 -27.5 -2.1 +47.6 +18.4 +8.1 +14.6 +36.1 -28.8 +18.7 -22.7
Steps
(reduced)
139
(1)
143
(5)
147
(9)
151
(13)
154
(16)
157
(19)
160
(22)
163
(25)
165
(27)
168
(30)
170
(32)