19L 11s

From Xenharmonic Wiki
Jump to navigation Jump to search
↖ 18L 10s ↑ 19L 10s 20L 10s ↗
← 18L 11s 19L 11s 20L 11s →
↙ 18L 12s ↓ 19L 12s 20L 12s ↘
┌╥╥┬╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥┬┐
│║║│║║│║║│║│║║│║║│║║│║│║║│║║│║││
││││││││││││││││││││││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLsLLsLLsLsLLsLLsLLsLsLLsLLsLs
sLsLLsLLsLsLLsLLsLLsLsLLsLLsLL
Equave 2/1 (1200.0¢)
Period 2/1 (1200.0¢)
Generator size
Bright 11\30 to 7\19 (440.0¢ to 442.1¢)
Dark 12\19 to 19\30 (757.9¢ to 760.0¢)
TAMNAMS information
Descends from 3L 5s (checkertonic)
Ancestor's step ratio range 3:2 to 5:3 (quasisoft)
Related MOS scales
Parent 11L 8s
Sister 11L 19s
Daughters 30L 19s, 19L 30s
Neutralized 8L 22s
2-Flought 49L 11s, 19L 41s
Equal tunings
Equalized (L:s = 1:1) 11\30 (440.0¢)
Supersoft (L:s = 4:3) 40\109 (440.4¢)
Soft (L:s = 3:2) 29\79 (440.5¢)
Semisoft (L:s = 5:3) 47\128 (440.6¢)
Basic (L:s = 2:1) 18\49 (440.8¢)
Semihard (L:s = 5:2) 43\117 (441.0¢)
Hard (L:s = 3:1) 25\68 (441.2¢)
Superhard (L:s = 4:1) 32\87 (441.4¢)
Collapsed (L:s = 1:0) 7\19 (442.1¢)

19L 11s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 19 large steps and 11 small steps, repeating every octave. 19L 11s is a great-grandchild scale of 3L 5s, expanding it by 22 tones. Generators that produce this scale range from 440¢ to 442.1¢, or from 757.9¢ to 760¢.

Intervals

Intervals of 19L 11s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0¢
1-mosstep Minor 1-mosstep m1ms s 0.0¢ to 40.0¢
Major 1-mosstep M1ms L 40.0¢ to 63.2¢
2-mosstep Minor 2-mosstep m2ms L + s 63.2¢ to 80.0¢
Major 2-mosstep M2ms 2L 80.0¢ to 126.3¢
3-mosstep Minor 3-mosstep m3ms L + 2s 63.2¢ to 120.0¢
Major 3-mosstep M3ms 2L + s 120.0¢ to 126.3¢
4-mosstep Minor 4-mosstep m4ms 2L + 2s 126.3¢ to 160.0¢
Major 4-mosstep M4ms 3L + s 160.0¢ to 189.5¢
5-mosstep Minor 5-mosstep m5ms 3L + 2s 189.5¢ to 200.0¢
Major 5-mosstep M5ms 4L + s 200.0¢ to 252.6¢
6-mosstep Minor 6-mosstep m6ms 3L + 3s 189.5¢ to 240.0¢
Major 6-mosstep M6ms 4L + 2s 240.0¢ to 252.6¢
7-mosstep Minor 7-mosstep m7ms 4L + 3s 252.6¢ to 280.0¢
Major 7-mosstep M7ms 5L + 2s 280.0¢ to 315.8¢
8-mosstep Minor 8-mosstep m8ms 5L + 3s 315.8¢ to 320.0¢
Major 8-mosstep M8ms 6L + 2s 320.0¢ to 378.9¢
9-mosstep Minor 9-mosstep m9ms 5L + 4s 315.8¢ to 360.0¢
Major 9-mosstep M9ms 6L + 3s 360.0¢ to 378.9¢
10-mosstep Minor 10-mosstep m10ms 6L + 4s 378.9¢ to 400.0¢
Major 10-mosstep M10ms 7L + 3s 400.0¢ to 442.1¢
11-mosstep Diminished 11-mosstep d11ms 6L + 5s 378.9¢ to 440.0¢
Perfect 11-mosstep P11ms 7L + 4s 440.0¢ to 442.1¢
12-mosstep Minor 12-mosstep m12ms 7L + 5s 442.1¢ to 480.0¢
Major 12-mosstep M12ms 8L + 4s 480.0¢ to 505.3¢
13-mosstep Minor 13-mosstep m13ms 8L + 5s 505.3¢ to 520.0¢
Major 13-mosstep M13ms 9L + 4s 520.0¢ to 568.4¢
14-mosstep Minor 14-mosstep m14ms 8L + 6s 505.3¢ to 560.0¢
Major 14-mosstep M14ms 9L + 5s 560.0¢ to 568.4¢
15-mosstep Minor 15-mosstep m15ms 9L + 6s 568.4¢ to 600.0¢
Major 15-mosstep M15ms 10L + 5s 600.0¢ to 631.6¢
16-mosstep Minor 16-mosstep m16ms 10L + 6s 631.6¢ to 640.0¢
Major 16-mosstep M16ms 11L + 5s 640.0¢ to 694.7¢
17-mosstep Minor 17-mosstep m17ms 10L + 7s 631.6¢ to 680.0¢
Major 17-mosstep M17ms 11L + 6s 680.0¢ to 694.7¢
18-mosstep Minor 18-mosstep m18ms 11L + 7s 694.7¢ to 720.0¢
Major 18-mosstep M18ms 12L + 6s 720.0¢ to 757.9¢
19-mosstep Perfect 19-mosstep P19ms 12L + 7s 757.9¢ to 760.0¢
Augmented 19-mosstep A19ms 13L + 6s 760.0¢ to 821.1¢
20-mosstep Minor 20-mosstep m20ms 12L + 8s 757.9¢ to 800.0¢
Major 20-mosstep M20ms 13L + 7s 800.0¢ to 821.1¢
21-mosstep Minor 21-mosstep m21ms 13L + 8s 821.1¢ to 840.0¢
Major 21-mosstep M21ms 14L + 7s 840.0¢ to 884.2¢
22-mosstep Minor 22-mosstep m22ms 13L + 9s 821.1¢ to 880.0¢
Major 22-mosstep M22ms 14L + 8s 880.0¢ to 884.2¢
23-mosstep Minor 23-mosstep m23ms 14L + 9s 884.2¢ to 920.0¢
Major 23-mosstep M23ms 15L + 8s 920.0¢ to 947.4¢
24-mosstep Minor 24-mosstep m24ms 15L + 9s 947.4¢ to 960.0¢
Major 24-mosstep M24ms 16L + 8s 960.0¢ to 1010.5¢
25-mosstep Minor 25-mosstep m25ms 15L + 10s 947.4¢ to 1000.0¢
Major 25-mosstep M25ms 16L + 9s 1000.0¢ to 1010.5¢
26-mosstep Minor 26-mosstep m26ms 16L + 10s 1010.5¢ to 1040.0¢
Major 26-mosstep M26ms 17L + 9s 1040.0¢ to 1073.7¢
27-mosstep Minor 27-mosstep m27ms 17L + 10s 1073.7¢ to 1080.0¢
Major 27-mosstep M27ms 18L + 9s 1080.0¢ to 1136.8¢
28-mosstep Minor 28-mosstep m28ms 17L + 11s 1073.7¢ to 1120.0¢
Major 28-mosstep M28ms 18L + 10s 1120.0¢ to 1136.8¢
29-mosstep Minor 29-mosstep m29ms 18L + 11s 1136.8¢ to 1160.0¢
Major 29-mosstep M29ms 19L + 10s 1160.0¢ to 1200.0¢
30-mosstep Perfect 30-mosstep P30ms 19L + 11s 1200.0¢

Scale tree

Scale Tree and Tuning Spectrum of 19L 11s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
11\30 440.000 760.000 1:1 1.000 Equalized 19L 11s
62\169 440.237 759.763 6:5 1.200
51\139 440.288 759.712 5:4 1.250
91\248 440.323 759.677 9:7 1.286
40\109 440.367 759.633 4:3 1.333 Supersoft 19L 11s
109\297 440.404 759.596 11:8 1.375
69\188 440.426 759.574 7:5 1.400
98\267 440.449 759.551 10:7 1.429
29\79 440.506 759.494 3:2 1.500 Soft 19L 11s
105\286 440.559 759.441 11:7 1.571
76\207 440.580 759.420 8:5 1.600
123\335 440.597 759.403 13:8 1.625
47\128 440.625 759.375 5:3 1.667 Semisoft 19L 11s
112\305 440.656 759.344 12:7 1.714
65\177 440.678 759.322 7:4 1.750
83\226 440.708 759.292 9:5 1.800
18\49 440.816 759.184 2:1 2.000 Basic 19L 11s
Scales with tunings softer than this are proper
79\215 440.930 759.070 9:4 2.250
61\166 440.964 759.036 7:3 2.333
104\283 440.989 759.011 12:5 2.400
43\117 441.026 758.974 5:2 2.500 Semihard 19L 11s
111\302 441.060 758.940 13:5 2.600
68\185 441.081 758.919 8:3 2.667
93\253 441.107 758.893 11:4 2.750
25\68 441.176 758.824 3:1 3.000 Hard 19L 11s
82\223 441.256 758.744 10:3 3.333
57\155 441.290 758.710 7:2 3.500
89\242 441.322 758.678 11:3 3.667
32\87 441.379 758.621 4:1 4.000 Superhard 19L 11s
71\193 441.451 758.549 9:2 4.500
39\106 441.509 758.491 5:1 5.000
46\125 441.600 758.400 6:1 6.000
7\19 442.105 757.895 1:0 → ∞ Collapsed 19L 11s


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.