19L 11s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLLsLLsLsLLsLLsLLsLsLLsLLsLs
sLsLLsLLsLsLLsLLsLLsLsLLsLLsLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
11\30 to 7\19 (440.0¢ to 442.1¢)
Dark
12\19 to 19\30 (757.9¢ to 760.0¢)
TAMNAMS information
Descends from
3L 5s (checkertonic)
Ancestor's step ratio range
3:2 to 5:3 (quasisoft)
Related MOS scales
Parent
11L 8s
Sister
11L 19s
Daughters
30L 19s, 19L 30s
Neutralized
8L 22s
2-Flought
49L 11s, 19L 41s
Equal tunings
Equalized (L:s = 1:1)
11\30 (440.0¢)
Supersoft (L:s = 4:3)
40\109 (440.4¢)
Soft (L:s = 3:2)
29\79 (440.5¢)
Semisoft (L:s = 5:3)
47\128 (440.6¢)
Basic (L:s = 2:1)
18\49 (440.8¢)
Semihard (L:s = 5:2)
43\117 (441.0¢)
Hard (L:s = 3:1)
25\68 (441.2¢)
Superhard (L:s = 4:1)
32\87 (441.4¢)
Collapsed (L:s = 1:0)
7\19 (442.1¢)
↖ 18L 10s | ↑ 19L 10s | 20L 10s ↗ |
← 18L 11s | 19L 11s | 20L 11s → |
↙ 18L 12s | ↓ 19L 12s | 20L 12s ↘ |
┌╥╥┬╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥┬┐ │║║│║║│║║│║│║║│║║│║║│║│║║│║║│║││ ││││││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLLsLLsLsLLsLLsLLsLsLLsLLsLL
19L 11s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 19 large steps and 11 small steps, repeating every octave. 19L 11s is a great-grandchild scale of 3L 5s, expanding it by 22 tones. Generators that produce this scale range from 440¢ to 442.1¢, or from 757.9¢ to 760¢.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 40.0¢ |
Major 1-mosstep | M1ms | L | 40.0¢ to 63.2¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 63.2¢ to 80.0¢ |
Major 2-mosstep | M2ms | 2L | 80.0¢ to 126.3¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 63.2¢ to 120.0¢ |
Major 3-mosstep | M3ms | 2L + s | 120.0¢ to 126.3¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 126.3¢ to 160.0¢ |
Major 4-mosstep | M4ms | 3L + s | 160.0¢ to 189.5¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 189.5¢ to 200.0¢ |
Major 5-mosstep | M5ms | 4L + s | 200.0¢ to 252.6¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 189.5¢ to 240.0¢ |
Major 6-mosstep | M6ms | 4L + 2s | 240.0¢ to 252.6¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 252.6¢ to 280.0¢ |
Major 7-mosstep | M7ms | 5L + 2s | 280.0¢ to 315.8¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 5L + 3s | 315.8¢ to 320.0¢ |
Major 8-mosstep | M8ms | 6L + 2s | 320.0¢ to 378.9¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 315.8¢ to 360.0¢ |
Major 9-mosstep | M9ms | 6L + 3s | 360.0¢ to 378.9¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 6L + 4s | 378.9¢ to 400.0¢ |
Major 10-mosstep | M10ms | 7L + 3s | 400.0¢ to 442.1¢ | |
11-mosstep | Diminished 11-mosstep | d11ms | 6L + 5s | 378.9¢ to 440.0¢ |
Perfect 11-mosstep | P11ms | 7L + 4s | 440.0¢ to 442.1¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 7L + 5s | 442.1¢ to 480.0¢ |
Major 12-mosstep | M12ms | 8L + 4s | 480.0¢ to 505.3¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 8L + 5s | 505.3¢ to 520.0¢ |
Major 13-mosstep | M13ms | 9L + 4s | 520.0¢ to 568.4¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 8L + 6s | 505.3¢ to 560.0¢ |
Major 14-mosstep | M14ms | 9L + 5s | 560.0¢ to 568.4¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 9L + 6s | 568.4¢ to 600.0¢ |
Major 15-mosstep | M15ms | 10L + 5s | 600.0¢ to 631.6¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 10L + 6s | 631.6¢ to 640.0¢ |
Major 16-mosstep | M16ms | 11L + 5s | 640.0¢ to 694.7¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 10L + 7s | 631.6¢ to 680.0¢ |
Major 17-mosstep | M17ms | 11L + 6s | 680.0¢ to 694.7¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 11L + 7s | 694.7¢ to 720.0¢ |
Major 18-mosstep | M18ms | 12L + 6s | 720.0¢ to 757.9¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | 12L + 7s | 757.9¢ to 760.0¢ |
Augmented 19-mosstep | A19ms | 13L + 6s | 760.0¢ to 821.1¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 12L + 8s | 757.9¢ to 800.0¢ |
Major 20-mosstep | M20ms | 13L + 7s | 800.0¢ to 821.1¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 13L + 8s | 821.1¢ to 840.0¢ |
Major 21-mosstep | M21ms | 14L + 7s | 840.0¢ to 884.2¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 13L + 9s | 821.1¢ to 880.0¢ |
Major 22-mosstep | M22ms | 14L + 8s | 880.0¢ to 884.2¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 14L + 9s | 884.2¢ to 920.0¢ |
Major 23-mosstep | M23ms | 15L + 8s | 920.0¢ to 947.4¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 15L + 9s | 947.4¢ to 960.0¢ |
Major 24-mosstep | M24ms | 16L + 8s | 960.0¢ to 1010.5¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 15L + 10s | 947.4¢ to 1000.0¢ |
Major 25-mosstep | M25ms | 16L + 9s | 1000.0¢ to 1010.5¢ | |
26-mosstep | Minor 26-mosstep | m26ms | 16L + 10s | 1010.5¢ to 1040.0¢ |
Major 26-mosstep | M26ms | 17L + 9s | 1040.0¢ to 1073.7¢ | |
27-mosstep | Minor 27-mosstep | m27ms | 17L + 10s | 1073.7¢ to 1080.0¢ |
Major 27-mosstep | M27ms | 18L + 9s | 1080.0¢ to 1136.8¢ | |
28-mosstep | Minor 28-mosstep | m28ms | 17L + 11s | 1073.7¢ to 1120.0¢ |
Major 28-mosstep | M28ms | 18L + 10s | 1120.0¢ to 1136.8¢ | |
29-mosstep | Minor 29-mosstep | m29ms | 18L + 11s | 1136.8¢ to 1160.0¢ |
Major 29-mosstep | M29ms | 19L + 10s | 1160.0¢ to 1200.0¢ | |
30-mosstep | Perfect 30-mosstep | P30ms | 19L + 11s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
11\30 | 440.000 | 760.000 | 1:1 | 1.000 | Equalized 19L 11s | |||||
62\169 | 440.237 | 759.763 | 6:5 | 1.200 | ||||||
51\139 | 440.288 | 759.712 | 5:4 | 1.250 | ||||||
91\248 | 440.323 | 759.677 | 9:7 | 1.286 | ||||||
40\109 | 440.367 | 759.633 | 4:3 | 1.333 | Supersoft 19L 11s | |||||
109\297 | 440.404 | 759.596 | 11:8 | 1.375 | ||||||
69\188 | 440.426 | 759.574 | 7:5 | 1.400 | ||||||
98\267 | 440.449 | 759.551 | 10:7 | 1.429 | ||||||
29\79 | 440.506 | 759.494 | 3:2 | 1.500 | Soft 19L 11s | |||||
105\286 | 440.559 | 759.441 | 11:7 | 1.571 | ||||||
76\207 | 440.580 | 759.420 | 8:5 | 1.600 | ||||||
123\335 | 440.597 | 759.403 | 13:8 | 1.625 | ||||||
47\128 | 440.625 | 759.375 | 5:3 | 1.667 | Semisoft 19L 11s | |||||
112\305 | 440.656 | 759.344 | 12:7 | 1.714 | ||||||
65\177 | 440.678 | 759.322 | 7:4 | 1.750 | ||||||
83\226 | 440.708 | 759.292 | 9:5 | 1.800 | ||||||
18\49 | 440.816 | 759.184 | 2:1 | 2.000 | Basic 19L 11s Scales with tunings softer than this are proper | |||||
79\215 | 440.930 | 759.070 | 9:4 | 2.250 | ||||||
61\166 | 440.964 | 759.036 | 7:3 | 2.333 | ||||||
104\283 | 440.989 | 759.011 | 12:5 | 2.400 | ||||||
43\117 | 441.026 | 758.974 | 5:2 | 2.500 | Semihard 19L 11s | |||||
111\302 | 441.060 | 758.940 | 13:5 | 2.600 | ||||||
68\185 | 441.081 | 758.919 | 8:3 | 2.667 | ||||||
93\253 | 441.107 | 758.893 | 11:4 | 2.750 | ||||||
25\68 | 441.176 | 758.824 | 3:1 | 3.000 | Hard 19L 11s | |||||
82\223 | 441.256 | 758.744 | 10:3 | 3.333 | ||||||
57\155 | 441.290 | 758.710 | 7:2 | 3.500 | ||||||
89\242 | 441.322 | 758.678 | 11:3 | 3.667 | ||||||
32\87 | 441.379 | 758.621 | 4:1 | 4.000 | Superhard 19L 11s | |||||
71\193 | 441.451 | 758.549 | 9:2 | 4.500 | ||||||
39\106 | 441.509 | 758.491 | 5:1 | 5.000 | ||||||
46\125 | 441.600 | 758.400 | 6:1 | 6.000 | ||||||
7\19 | 442.105 | 757.895 | 1:0 | → ∞ | Collapsed 19L 11s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |