19L 11s
Jump to navigation
Jump to search
↖ 18L 10s | ↑ 19L 10s | 20L 10s ↗ |
← 18L 11s | 19L 11s | 20L 11s → |
↙ 18L 12s | ↓ 19L 12s | 20L 12s ↘ |
┌╥╥┬╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥┬┐ │║║│║║│║║│║│║║│║║│║║│║│║║│║║│║││ ││││││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLsLLsLLsLsLLsLLsLLsLsLLsLLsLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
19L 11s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 19 large steps and 11 small steps, repeating every octave. 19L 11s is a great-grandchild scale of 3L 5s, expanding it by 22 tones. Generators that produce this scale range from 440 ¢ to 442.1 ¢, or from 757.9 ¢ to 760 ¢.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 40.0 ¢ |
Major 1-mosstep | M1ms | L | 40.0 ¢ to 63.2 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 63.2 ¢ to 80.0 ¢ |
Major 2-mosstep | M2ms | 2L | 80.0 ¢ to 126.3 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 63.2 ¢ to 120.0 ¢ |
Major 3-mosstep | M3ms | 2L + s | 120.0 ¢ to 126.3 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 126.3 ¢ to 160.0 ¢ |
Major 4-mosstep | M4ms | 3L + s | 160.0 ¢ to 189.5 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 189.5 ¢ to 200.0 ¢ |
Major 5-mosstep | M5ms | 4L + s | 200.0 ¢ to 252.6 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 189.5 ¢ to 240.0 ¢ |
Major 6-mosstep | M6ms | 4L + 2s | 240.0 ¢ to 252.6 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 252.6 ¢ to 280.0 ¢ |
Major 7-mosstep | M7ms | 5L + 2s | 280.0 ¢ to 315.8 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 5L + 3s | 315.8 ¢ to 320.0 ¢ |
Major 8-mosstep | M8ms | 6L + 2s | 320.0 ¢ to 378.9 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 315.8 ¢ to 360.0 ¢ |
Major 9-mosstep | M9ms | 6L + 3s | 360.0 ¢ to 378.9 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 6L + 4s | 378.9 ¢ to 400.0 ¢ |
Major 10-mosstep | M10ms | 7L + 3s | 400.0 ¢ to 442.1 ¢ | |
11-mosstep | Diminished 11-mosstep | d11ms | 6L + 5s | 378.9 ¢ to 440.0 ¢ |
Perfect 11-mosstep | P11ms | 7L + 4s | 440.0 ¢ to 442.1 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 7L + 5s | 442.1 ¢ to 480.0 ¢ |
Major 12-mosstep | M12ms | 8L + 4s | 480.0 ¢ to 505.3 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 8L + 5s | 505.3 ¢ to 520.0 ¢ |
Major 13-mosstep | M13ms | 9L + 4s | 520.0 ¢ to 568.4 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 8L + 6s | 505.3 ¢ to 560.0 ¢ |
Major 14-mosstep | M14ms | 9L + 5s | 560.0 ¢ to 568.4 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 9L + 6s | 568.4 ¢ to 600.0 ¢ |
Major 15-mosstep | M15ms | 10L + 5s | 600.0 ¢ to 631.6 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 10L + 6s | 631.6 ¢ to 640.0 ¢ |
Major 16-mosstep | M16ms | 11L + 5s | 640.0 ¢ to 694.7 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 10L + 7s | 631.6 ¢ to 680.0 ¢ |
Major 17-mosstep | M17ms | 11L + 6s | 680.0 ¢ to 694.7 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 11L + 7s | 694.7 ¢ to 720.0 ¢ |
Major 18-mosstep | M18ms | 12L + 6s | 720.0 ¢ to 757.9 ¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | 12L + 7s | 757.9 ¢ to 760.0 ¢ |
Augmented 19-mosstep | A19ms | 13L + 6s | 760.0 ¢ to 821.1 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 12L + 8s | 757.9 ¢ to 800.0 ¢ |
Major 20-mosstep | M20ms | 13L + 7s | 800.0 ¢ to 821.1 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 13L + 8s | 821.1 ¢ to 840.0 ¢ |
Major 21-mosstep | M21ms | 14L + 7s | 840.0 ¢ to 884.2 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 13L + 9s | 821.1 ¢ to 880.0 ¢ |
Major 22-mosstep | M22ms | 14L + 8s | 880.0 ¢ to 884.2 ¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 14L + 9s | 884.2 ¢ to 920.0 ¢ |
Major 23-mosstep | M23ms | 15L + 8s | 920.0 ¢ to 947.4 ¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 15L + 9s | 947.4 ¢ to 960.0 ¢ |
Major 24-mosstep | M24ms | 16L + 8s | 960.0 ¢ to 1010.5 ¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 15L + 10s | 947.4 ¢ to 1000.0 ¢ |
Major 25-mosstep | M25ms | 16L + 9s | 1000.0 ¢ to 1010.5 ¢ | |
26-mosstep | Minor 26-mosstep | m26ms | 16L + 10s | 1010.5 ¢ to 1040.0 ¢ |
Major 26-mosstep | M26ms | 17L + 9s | 1040.0 ¢ to 1073.7 ¢ | |
27-mosstep | Minor 27-mosstep | m27ms | 17L + 10s | 1073.7 ¢ to 1080.0 ¢ |
Major 27-mosstep | M27ms | 18L + 9s | 1080.0 ¢ to 1136.8 ¢ | |
28-mosstep | Minor 28-mosstep | m28ms | 17L + 11s | 1073.7 ¢ to 1120.0 ¢ |
Major 28-mosstep | M28ms | 18L + 10s | 1120.0 ¢ to 1136.8 ¢ | |
29-mosstep | Minor 29-mosstep | m29ms | 18L + 11s | 1136.8 ¢ to 1160.0 ¢ |
Major 29-mosstep | M29ms | 19L + 10s | 1160.0 ¢ to 1200.0 ¢ | |
30-mosstep | Perfect 30-mosstep | P30ms | 19L + 11s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
48 | Augmented 18-mosdegree | A18md |
47 | Augmented 7-mosdegree | A7md |
46 | Augmented 26-mosdegree | A26md |
45 | Augmented 15-mosdegree | A15md |
44 | Augmented 4-mosdegree | A4md |
43 | Augmented 23-mosdegree | A23md |
42 | Augmented 12-mosdegree | A12md |
41 | Augmented 1-mosdegree | A1md |
40 | Augmented 20-mosdegree | A20md |
39 | Augmented 9-mosdegree | A9md |
38 | Augmented 28-mosdegree | A28md |
37 | Augmented 17-mosdegree | A17md |
36 | Augmented 6-mosdegree | A6md |
35 | Augmented 25-mosdegree | A25md |
34 | Augmented 14-mosdegree | A14md |
33 | Augmented 3-mosdegree | A3md |
32 | Augmented 22-mosdegree | A22md |
31 | Augmented 11-mosdegree | A11md |
30 | Augmented 0-mosdegree | A0md |
29 | Augmented 19-mosdegree | A19md |
28 | Major 8-mosdegree | M8md |
27 | Major 27-mosdegree | M27md |
26 | Major 16-mosdegree | M16md |
25 | Major 5-mosdegree | M5md |
24 | Major 24-mosdegree | M24md |
23 | Major 13-mosdegree | M13md |
22 | Major 2-mosdegree | M2md |
21 | Major 21-mosdegree | M21md |
20 | Major 10-mosdegree | M10md |
19 | Major 29-mosdegree | M29md |
18 | Major 18-mosdegree | M18md |
17 | Major 7-mosdegree | M7md |
16 | Major 26-mosdegree | M26md |
15 | Major 15-mosdegree | M15md |
14 | Major 4-mosdegree | M4md |
13 | Major 23-mosdegree | M23md |
12 | Major 12-mosdegree | M12md |
11 | Major 1-mosdegree | M1md |
10 | Major 20-mosdegree | M20md |
9 | Major 9-mosdegree | M9md |
8 | Major 28-mosdegree | M28md |
7 | Major 17-mosdegree | M17md |
6 | Major 6-mosdegree | M6md |
5 | Major 25-mosdegree | M25md |
4 | Major 14-mosdegree | M14md |
3 | Major 3-mosdegree | M3md |
2 | Major 22-mosdegree | M22md |
1 | Perfect 11-mosdegree | P11md |
0 | Perfect 0-mosdegree Perfect 30-mosdegree |
P0md P30md |
−1 | Perfect 19-mosdegree | P19md |
−2 | Minor 8-mosdegree | m8md |
−3 | Minor 27-mosdegree | m27md |
−4 | Minor 16-mosdegree | m16md |
−5 | Minor 5-mosdegree | m5md |
−6 | Minor 24-mosdegree | m24md |
−7 | Minor 13-mosdegree | m13md |
−8 | Minor 2-mosdegree | m2md |
−9 | Minor 21-mosdegree | m21md |
−10 | Minor 10-mosdegree | m10md |
−11 | Minor 29-mosdegree | m29md |
−12 | Minor 18-mosdegree | m18md |
−13 | Minor 7-mosdegree | m7md |
−14 | Minor 26-mosdegree | m26md |
−15 | Minor 15-mosdegree | m15md |
−16 | Minor 4-mosdegree | m4md |
−17 | Minor 23-mosdegree | m23md |
−18 | Minor 12-mosdegree | m12md |
−19 | Minor 1-mosdegree | m1md |
−20 | Minor 20-mosdegree | m20md |
−21 | Minor 9-mosdegree | m9md |
−22 | Minor 28-mosdegree | m28md |
−23 | Minor 17-mosdegree | m17md |
−24 | Minor 6-mosdegree | m6md |
−25 | Minor 25-mosdegree | m25md |
−26 | Minor 14-mosdegree | m14md |
−27 | Minor 3-mosdegree | m3md |
−28 | Minor 22-mosdegree | m22md |
−29 | Diminished 11-mosdegree | d11md |
−30 | Diminished 30-mosdegree | d30md |
−31 | Diminished 19-mosdegree | d19md |
−32 | Diminished 8-mosdegree | d8md |
−33 | Diminished 27-mosdegree | d27md |
−34 | Diminished 16-mosdegree | d16md |
−35 | Diminished 5-mosdegree | d5md |
−36 | Diminished 24-mosdegree | d24md |
−37 | Diminished 13-mosdegree | d13md |
−38 | Diminished 2-mosdegree | d2md |
−39 | Diminished 21-mosdegree | d21md |
−40 | Diminished 10-mosdegree | d10md |
−41 | Diminished 29-mosdegree | d29md |
−42 | Diminished 18-mosdegree | d18md |
−43 | Diminished 7-mosdegree | d7md |
−44 | Diminished 26-mosdegree | d26md |
−45 | Diminished 15-mosdegree | d15md |
−46 | Diminished 4-mosdegree | d4md |
−47 | Diminished 23-mosdegree | d23md |
−48 | Diminished 12-mosdegree | d12md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |||
29|0 | 1 | LLsLLsLLsLsLLsLLsLLsLsLLsLLsLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
28|1 | 12 | LLsLLsLLsLsLLsLLsLsLLsLLsLLsLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
27|2 | 23 | LLsLLsLsLLsLLsLLsLsLLsLLsLLsLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
26|3 | 4 | LLsLLsLsLLsLLsLLsLsLLsLLsLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. |
25|4 | 15 | LLsLLsLsLLsLLsLsLLsLLsLLsLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. |
24|5 | 26 | LLsLsLLsLLsLLsLsLLsLLsLLsLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. |
23|6 | 7 | LLsLsLLsLLsLLsLsLLsLLsLsLLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. |
22|7 | 18 | LLsLsLLsLLsLsLLsLLsLLsLsLLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. |
21|8 | 29 | LsLLsLLsLLsLsLLsLLsLLsLsLLsLLs | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. |
20|9 | 10 | LsLLsLLsLLsLsLLsLLsLsLLsLLsLLs | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. |
19|10 | 21 | LsLLsLLsLsLLsLLsLLsLsLLsLLsLLs | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. |
18|11 | 2 | LsLLsLLsLsLLsLLsLLsLsLLsLLsLsL | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. |
17|12 | 13 | LsLLsLLsLsLLsLLsLsLLsLLsLLsLsL | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. |
16|13 | 24 | LsLLsLsLLsLLsLLsLsLLsLLsLLsLsL | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. |
15|14 | 5 | LsLLsLsLLsLLsLLsLsLLsLLsLsLLsL | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. |
14|15 | 16 | LsLLsLsLLsLLsLsLLsLLsLLsLsLLsL | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. |
13|16 | 27 | LsLsLLsLLsLLsLsLLsLLsLLsLsLLsL | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. |
12|17 | 8 | LsLsLLsLLsLLsLsLLsLLsLsLLsLLsL | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. |
11|18 | 19 | LsLsLLsLLsLsLLsLLsLLsLsLLsLLsL | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. |
10|19 | 30 | sLLsLLsLLsLsLLsLLsLLsLsLLsLLsL | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. |
9|20 | 11 | sLLsLLsLLsLsLLsLLsLsLLsLLsLLsL | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. |
8|21 | 22 | sLLsLLsLsLLsLLsLLsLsLLsLLsLLsL | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. |
7|22 | 3 | sLLsLLsLsLLsLLsLLsLsLLsLLsLsLL | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. |
6|23 | 14 | sLLsLLsLsLLsLLsLsLLsLLsLLsLsLL | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. |
5|24 | 25 | sLLsLsLLsLLsLLsLsLLsLLsLLsLsLL | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. |
4|25 | 6 | sLLsLsLLsLLsLLsLsLLsLLsLsLLsLL | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
3|26 | 17 | sLLsLsLLsLLsLsLLsLLsLLsLsLLsLL | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
2|27 | 28 | sLsLLsLLsLLsLsLLsLLsLLsLsLLsLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
1|28 | 9 | sLsLLsLLsLLsLsLLsLLsLsLLsLLsLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
0|29 | 20 | sLsLLsLLsLsLLsLLsLLsLsLLsLLsLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
11\30 | 440.000 | 760.000 | 1:1 | 1.000 | Equalized 19L 11s | |||||
62\169 | 440.237 | 759.763 | 6:5 | 1.200 | ||||||
51\139 | 440.288 | 759.712 | 5:4 | 1.250 | ||||||
91\248 | 440.323 | 759.677 | 9:7 | 1.286 | ||||||
40\109 | 440.367 | 759.633 | 4:3 | 1.333 | Supersoft 19L 11s | |||||
109\297 | 440.404 | 759.596 | 11:8 | 1.375 | ||||||
69\188 | 440.426 | 759.574 | 7:5 | 1.400 | ||||||
98\267 | 440.449 | 759.551 | 10:7 | 1.429 | ||||||
29\79 | 440.506 | 759.494 | 3:2 | 1.500 | Soft 19L 11s | |||||
105\286 | 440.559 | 759.441 | 11:7 | 1.571 | ||||||
76\207 | 440.580 | 759.420 | 8:5 | 1.600 | ||||||
123\335 | 440.597 | 759.403 | 13:8 | 1.625 | ||||||
47\128 | 440.625 | 759.375 | 5:3 | 1.667 | Semisoft 19L 11s | |||||
112\305 | 440.656 | 759.344 | 12:7 | 1.714 | ||||||
65\177 | 440.678 | 759.322 | 7:4 | 1.750 | ||||||
83\226 | 440.708 | 759.292 | 9:5 | 1.800 | ||||||
18\49 | 440.816 | 759.184 | 2:1 | 2.000 | Basic 19L 11s Scales with tunings softer than this are proper | |||||
79\215 | 440.930 | 759.070 | 9:4 | 2.250 | ||||||
61\166 | 440.964 | 759.036 | 7:3 | 2.333 | ||||||
104\283 | 440.989 | 759.011 | 12:5 | 2.400 | ||||||
43\117 | 441.026 | 758.974 | 5:2 | 2.500 | Semihard 19L 11s | |||||
111\302 | 441.060 | 758.940 | 13:5 | 2.600 | ||||||
68\185 | 441.081 | 758.919 | 8:3 | 2.667 | ||||||
93\253 | 441.107 | 758.893 | 11:4 | 2.750 | ||||||
25\68 | 441.176 | 758.824 | 3:1 | 3.000 | Hard 19L 11s | |||||
82\223 | 441.256 | 758.744 | 10:3 | 3.333 | ||||||
57\155 | 441.290 | 758.710 | 7:2 | 3.500 | ||||||
89\242 | 441.322 | 758.678 | 11:3 | 3.667 | ||||||
32\87 | 441.379 | 758.621 | 4:1 | 4.000 | Superhard 19L 11s | |||||
71\193 | 441.451 | 758.549 | 9:2 | 4.500 | ||||||
39\106 | 441.509 | 758.491 | 5:1 | 5.000 | ||||||
46\125 | 441.600 | 758.400 | 6:1 | 6.000 | ||||||
7\19 | 442.105 | 757.895 | 1:0 | → ∞ | Collapsed 19L 11s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |