57edo

From Xenharmonic Wiki
Revision as of 09:26, 14 August 2024 by FloraC (talk | contribs) (Cleanup)
Jump to navigation Jump to search
← 56edo 57edo 58edo →
Prime factorization 3 × 19
Step size 21.0526 ¢ 
Fifth 33\57 (694.737 ¢) (→ 11\19)
Semitones (A1:m2) 3:6 (63.16 ¢ : 126.3 ¢)
Dual sharp fifth 34\57 (715.789 ¢)
Dual flat fifth 33\57 (694.737 ¢) (→ 11\19)
Dual major 2nd 10\57 (210.526 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

57edo can be used to tune the mothra temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57edo is that it has a 5-limit part consisting of three rings of 19edo, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46 & 57 temperament heinz.

5-limit commas: 81/80, 3125/3072

7-limit commas: 81/80, 3125/3072, 1029/1024

11-limit commas: 99/98, 385/384, 441/440, 625/616

Odd harmonics

Approximation of odd harmonics in 57edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -7.22 -7.37 -0.40 +6.62 -3.95 +1.58 +6.47 +0.31 -2.78 -7.62 +3.30
Relative (%) -34.3 -35.0 -1.9 +31.4 -18.8 +7.5 +30.7 +1.5 -13.2 -36.2 +15.7
Steps
(reduced)
90
(33)
132
(18)
160
(46)
181
(10)
197
(26)
211
(40)
223
(52)
233
(5)
242
(14)
250
(22)
258
(30)

Intervals

# Cents Ups and Downs Notation
(Flat Fifth 11\19)
Ups and Downs Notation
(Sharp Fifth 34\57)
0 0.00 D D
1 21.05 ^D, ^E♭♭♭ ^D, E♭
2 42.11 vD♯, vE♭♭ ^^D, ^E♭
3 63.16 D♯, E♭♭ ^3D, ^^E♭
4 84.21 ^D♯, ^E♭♭ ^4D, ^3E♭
5 105.26 vD𝄪, vE♭ ^5D, ^4E♭
6 126.32 D𝄪, E♭ v4D♯, v5E
7 147.37 ^D𝄪, ^E♭ v3D♯, v4E
8 168.42 vD♯𝄪, vE vvD♯, v3E
9 189.47 E vD♯, vvE
10 210.53 ^E, ^F♭♭ D♯, vE
11 231.58 vE♯, vF♭ E
12 252.63 E♯, F♭ F
13 273.68 ^E♯, ^F♭ ^F, G♭
14 294.74 vE𝄪, vF ^^F, ^G♭
15 315.79 F ^3F, ^^G♭
16 336.84 ^F, ^G♭♭♭ ^4F, ^3G♭
17 357.89 vF♯, vG♭♭ ^5F, ^4G♭
18 378.95 F♯, G♭♭ v4F♯, v5G
19 400.00 ^F♯, ^G♭♭ v3F♯, v4G
20 421.05 vF𝄪, vG♭ vvF♯, v3G
21 442.11 F𝄪, G♭ vF♯, vvG
22 463.16 ^F𝄪, ^G♭ F♯, vG
23 484.21 vF♯𝄪, vG G
24 505.26 G ^G, A♭
25 526.32 ^G, ^A♭♭♭ ^^G, ^A♭
26 547.37 vG♯, vA♭♭ ^3G, ^^A♭
27 568.42 G♯, A♭♭ ^4G, ^3A♭
28 589.47 ^G♯, ^A♭♭ ^5G, ^4A♭
29 610.53 vG𝄪, vA♭ v4G♯, v5A
30 631.58 G𝄪, A♭ v3G♯, v4A
31 652.63 ^G𝄪, ^A♭ vvG♯, v3A
32 673.68 vG♯𝄪, vA vG♯, vvA
33 694.74 A G♯, vA
34 715.79 ^A, ^B♭♭♭ A
35 736.84 vA♯, vB♭♭ ^A, B♭
36 757.89 A♯, B♭♭ ^^A, ^B♭
37 778.95 ^A♯, ^B♭♭ ^3A, ^^B♭
38 800.00 vA𝄪, vB♭ ^4A, ^3B♭
39 821.05 A𝄪, B♭ ^5A, ^4B♭
40 842.11 ^A𝄪, ^B♭ v4A♯, v5B
41 863.16 vA♯𝄪, vB v3A♯, v4B
42 884.21 B vvA♯, v3B
43 905.26 ^B, ^C♭♭ vA♯, vvB
44 926.32 vB♯, vC♭ A♯, vB
45 947.37 B♯, C♭ B
46 968.42 ^B♯, ^C♭ C
47 989.47 vB𝄪, vC ^C, D♭
48 1010.53 C ^^C, ^D♭
49 1031.58 ^C, ^D♭♭♭ ^3C, ^^D♭
50 1052.63 vC♯, vD♭♭ ^4C, ^3D♭
51 1073.68 C♯, D♭♭ ^5C, ^4D♭
52 1094.74 ^C♯, ^D♭♭ v4C♯, v5D
53 1115.79 vC𝄪, vD♭ v3C♯, v4D
54 1136.84 C𝄪, D♭ vvC♯, v3D
55 1157.89 ^C𝄪, ^D♭ vC♯, vvD
56 1178.95 vC♯𝄪, vD C♯, vD
57 1200.00 D D

Scales

  • 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene)