432edo

From Xenharmonic Wiki
Revision as of 16:57, 7 November 2023 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|432}} == Theory == 432et tempers out 283115520/282475249, 703125/702464, 102760448/102515625 and 40353607/40310784 in the 7-limit. It provi...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
← 431edo 432edo 433edo →
Prime factorization 24 × 33
Step size 2.77778 ¢ 
Fifth 253\432 (702.778 ¢)
Semitones (A1:m2) 43:31 (119.4 ¢ : 86.11 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

432et tempers out 283115520/282475249, 703125/702464, 102760448/102515625 and 40353607/40310784 in the 7-limit. It provides the optimal patent val for the maja temperament.

Odd harmonics

Approximation of odd harmonics in 432edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.82 -0.20 +0.62 -1.13 -1.32 +1.14 +0.62 +0.60 -0.29 -1.34 -0.50
Relative (%) +29.6 -7.3 +22.3 -40.8 -47.4 +41.0 +22.3 +21.6 -10.5 -48.1 -17.9
Steps
(reduced)
685
(253)
1003
(139)
1213
(349)
1369
(73)
1494
(198)
1599
(303)
1688
(392)
1766
(38)
1835
(107)
1897
(169)
1954
(226)

Subsets and supersets

432 is a highly factorable number. It factors into 24 × 33, with subset edos 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, and 216.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [685 -432 [432 685]] -0.2596 0.2595 9.34
2.3.5 [41 -20 -4, [-3 -23 17 [432 685 1003]] -0.1440 0.2676 9.63
2.3.5.7 5120/5103, 703125/702464, 6565234375/6530347008 [432 685 1003 1213]] -0.1631 0.2341 8.43

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 163\432 452.78 125/96 Maja
4 179\432
(37\432)
497.22
(102.78)
4/3 Undim

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct