460edo

From Xenharmonic Wiki
Revision as of 05:05, 16 November 2024 by ArrowHead294 (talk | contribs)
Jump to navigation Jump to search
← 459edo 460edo 461edo →
Prime factorization 22 × 5 × 23
Step size 2.6087 ¢ 
Fifth 269\460 (701.739 ¢)
Semitones (A1:m2) 43:35 (112.2 ¢ : 91.3 ¢)
Consistency limit 21
Distinct consistency limit 21

Template:EDO intro

Theory

460edo is a very strong 19-limit system and is distinctly consistent to the 21-odd-limit, with harmonics of 3 to 19 all tuned flat.

The equal temperament tempers out the schisma, 32805/32768, in the 5-limit and 4375/4374 and 65536/65625 in the 7-limit, so that it supports pontiac, the 171 & 289 temperament. In the 11-limit it tempers of 3025/3024 and 9801/9800, and 43923/43904; in the 13-limit 1001/1000, 4225/4224 and 10648/10647, so that it supports deca, the 190 & 270 temperament; in the 17-limit 833/832, 1089/1088, 1225/1224, 1701/1700, 2058/2057, 2431/2430, 2601/2600 and 4914/4913; and in the 19-limit 1331/1330, 1445/1444, 1521/1520, 1540/1539, 1729/1728, 2376/2375, 2926/2925, 3136/3135, 3250/3249 and 4200/4199. It serves as the optimal patent val for various temperaments such as the rank-5 temperament tempering out 833/832 and 1001/1000.

Prime harmonics

Approximation of prime harmonics in 460edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.22 -0.23 -1.00 -0.88 -0.53 -0.61 -0.12 +0.42 +0.86 +0.18
Relative (%) +0.0 -8.3 -8.7 -38.3 -33.9 -20.2 -23.3 -4.7 +16.2 +32.9 +7.0
Steps
(reduced)
460
(0)
729
(269)
1068
(148)
1291
(371)
1591
(211)
1702
(322)
1880
(40)
1954
(114)
2081
(241)
2235
(395)
2279
(439)

Subsets and supersets

Since 460 factors into 22 × 5 × 23, 460edo has subset edos 2, 4, 5, 10, 20, 23, 46, 92, 115, and 230.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-729 460 | [460 729]] | +0.0681 | 0.0681 | 2.61 |- | 2.3.5 | 32805/32768, [6 68 -49 | [460 729 1068]] | +0.0780 | 0.0573 | 2.20 |- | 2.3.5.7 | 4375/4374, 32805/32768, [-4 -2 -9 10 | [460 729 1068 1291]] | +0.1475 | 0.1303 | 4.99 |- | 2.3.5.7.11 | 3025/3024, 4375/4374, 32805/32768, 184877/184320 | [460 729 1068 1291 1591]] | +0.1691 | 0.1243 | 4.76 |- | 2.3.5.7.11.13 | 1001/1000, 3025/3024, 4225/4224, 4375/4374, 26411/26364 | [460 729 1068 1291 1591 1702]] | +0.1647 | 0.1139 | 4.36 |- | 2.3.5.7.11.13.17 | 833/832, 1001/1000, 1089/1088, 1225/1224, 1701/1700, 4225/4224 | [460 729 1068 1291 1591 1702 1880]] | +0.1624 | 0.1056 | 4.05 |- | 2.3.5.7.11.13.17.19 | 833/832, 1001/1000, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1617/1615 | [460 729 1068 1291 1591 1702 1880 1954]] | +0.1457 | 0.1082 | 4.15 Template:Comma basis end

  • 460et has lower absolute errors in the 17- and 19-limit than any previous equal temperaments. It beats 422 in either subgroup, and is bettered by 494 in the 17-limit, and 525 in the 19-limit.

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 9\460 | 23.48 | 531441/524288 | Commatose |- | 1 | 121\460 | 315.65 | 6/5 | Egads |- | 1 | 191\460 | 498.26 | 4/3 | Pontiac |- | 10 | 121\460
(17\460) | 315.65
(44.35) | 6/5
(40/39) | Deca |- | 20 | 66\460
(20\460) | 172.173
(52.173) | 169/153
(?) | Calcium |- | 20 | 217\460
(10\460) | 566.086
(26.086) | 238/165
(?) | Soviet ferris wheel Template:Rank-2 end Template:Orf