71zpi
71 zeta peak index (abbreviated 71zpi), is the equal-step tuning system obtained from the 71st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
71zpi | 20.2248393119540 | 59.3329806724710 | 3.531097 | 0.613581 | 12.986080 | 20edo | 1186.65961344942 | 6 | 6 |

Theory
71zpi marks the most prominent zeta peak index in the vicinity of 20edo. While 70zpi is the nearest peak to 20edo and closely competes with 71zpi in terms of strength, 71zpi remains superior across all measures of strength. 71zpi may also be viewed as a tritave compression of 32edt, a no-2s zeta peak EDT (consistent in the no-2s 21-throdd-limit), but with less extreme stretch than the no-2s peak at 59.271105 cents.
71zpi features a good 3:5:9:11:14:15:16:19:25:26:33 chord, which differs a lot from the harmonic characteristics of 20edo.
The nearest zeta peaks to 71zpi that surpass its strength are 65zpi and 75zpi.
71zpi is distinguished by its extensive EDO-deviation and substantial zeta strength, qualifying it as a strong candidate for no-octave tuning systems. It is noteworthy that only 19zpi exhibits both a greater octave error and stronger zeta height and integral than 71zpi, although 71zpi still has a more pronounced zeta gap. Other notable zeta peak indices in this category include 61zpi, 84zpi, 110zpi, 137zpi, 151zpi, 222zpi, and 273zpi, each demonstrating characteristics that make them suitable for similar applications.
Harmonic series
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -13.3 | -3.3 | -26.7 | +2.3 | -16.6 | +13.2 | +19.3 | -6.6 | -11.0 | +2.0 | +29.4 | +9.4 | -0.2 | -1.0 | +6.0 |
Relative (%) | -22.5 | -5.6 | -45.0 | +3.9 | -28.0 | +22.2 | +32.5 | -11.1 | -18.5 | +3.4 | +49.5 | +15.9 | -0.3 | -1.6 | +10.1 | |
Step | 20 | 32 | 40 | 47 | 52 | 57 | 61 | 64 | 67 | 70 | 73 | 75 | 77 | 79 | 81 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +19.7 | -19.9 | +5.1 | -24.3 | +9.9 | -11.3 | -29.0 | +16.0 | +4.7 | -3.9 | -9.9 | -13.5 | -14.9 | -14.3 | -11.7 | -7.4 | -1.3 |
Relative (%) | +33.2 | -33.6 | +8.6 | -41.0 | +16.6 | -19.1 | -48.8 | +27.0 | +7.9 | -6.6 | -16.7 | -22.8 | -25.2 | -24.1 | -19.8 | -12.4 | -2.2 | |
Step | 83 | 84 | 86 | 87 | 89 | 90 | 91 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 |
Intervals
There are multiple ways to approach notation. The simplest method is to use the notations from 20edo. However, this approach will not preserve octave compression when the audio is rendered by notation software. If maintaining accurate step compression in notation software is important, consider using the ups and downs notation from 182edo at every 9-degree step. With this method, the tonal difference will be less than 1 cent up to the 86th harmonic.
JI ratios are comprised of 32-integer limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 30 steps Limma = 16 steps Apotome = 14 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 59.333 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19 | v7m2 | 9 |
2 | 118.666 | 19/18, 18/17, 17/16, 16/15, 31/29, 15/14, 29/27, 14/13, 27/25, 13/12, 25/23 | ^^m2 | 18 |
3 | 177.999 | 12/11, 23/21, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8 | vvvM2 | 27 |
4 | 237.332 | 26/23, 17/15, 25/22, 8/7, 31/27, 23/20, 15/13, 22/19, 29/25, 7/6 | ^6M2 | 36 |
5 | 296.665 | 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26, 6/5 | vm3 | 45 |
6 | 355.998 | 29/24, 23/19, 17/14, 28/23, 11/9, 27/22, 16/13, 21/17, 26/21, 31/25 | v6M3 | 54 |
7 | 415.331 | 5/4, 29/23, 24/19, 19/15, 14/11, 23/18, 32/25, 9/7, 31/24 | ^^^M3 | 63 |
8 | 474.664 | 22/17, 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 4/3 | v44 | 72 |
9 | 533.997 | 31/23, 27/20, 23/17, 19/14, 15/11, 26/19, 11/8, 29/21, 18/13 | ^54 | 81 |
10 | 593.330 | 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19, 10/7 | A4 | 90 |
11 | 652.663 | 23/16, 13/9, 29/20, 16/11, 19/13, 22/15, 25/17, 28/19, 31/21 | ~5 | 99 |
12 | 711.996 | 3/2, 32/21, 29/19, 26/17, 23/15 | ^^5 | 108 |
13 | 771.329 | 20/13, 17/11, 31/20, 14/9, 25/16, 11/7, 30/19, 19/12, 27/17 | v5m6 | 117 |
14 | 830.662 | 8/5, 29/18, 21/13, 13/8, 31/19, 18/11, 23/14 | ^4m6 | 126 |
15 | 889.995 | 28/17, 5/3, 32/19, 27/16, 22/13, 17/10 | vM6 | 135 |
16 | 949.328 | 29/17, 12/7, 31/18, 19/11, 26/15, 7/4 | v6A6, ^6d7 | 144 |
17 | 1008.661 | 30/17, 23/13, 16/9, 25/14, 9/5, 29/16, 20/11 | ^m7 | 153 |
18 | 1067.994 | 31/17, 11/6, 24/13, 13/7, 28/15, 15/8, 32/17 | v4M7 | 162 |
19 | 1127.327 | 17/9, 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | ^5M7 | 171 |
20 | 1186.660 | 2/1 | vv1 +1 oct | 180 |
21 | 1245.993 | 31/15, 29/14, 27/13, 25/12 | ^71 +1 oct | 189 |
22 | 1305.326 | 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13 | m2 +1 oct | 198 |
23 | 1364.659 | 13/6, 24/11, 11/5, 31/14, 20/9, 29/13 | v5M2 +1 oct | 207 |
24 | 1423.992 | 9/4, 25/11, 16/7, 23/10, 30/13 | ^4M2 +1 oct | 216 |
25 | 1483.325 | 7/3, 26/11, 19/8, 31/13 | vvvm3 +1 oct | 225 |
26 | 1542.657 | 12/5, 29/12, 17/7, 22/9, 27/11, 32/13 | ^6m3 +1 oct | 234 |
27 | 1601.990 | 5/2, 28/11, 23/9 | ^M3 +1 oct | 243 |
28 | 1661.323 | 18/7, 31/12, 13/5, 21/8, 29/11 | v64 +1 oct | 252 |
29 | 1720.656 | 8/3, 27/10, 19/7, 30/11 | ^^^4 +1 oct | 261 |
30 | 1779.989 | 11/4, 25/9, 14/5, 31/11, 17/6 | vvA4 +1 oct | 270 |
31 | 1839.322 | 20/7, 23/8, 26/9, 29/10, 32/11 | ^5d5 +1 oct | 279 |
32 | 1898.655 | 3/1 | P5 +1 oct | 288 |
33 | 1957.988 | 31/10, 28/9, 25/8, 22/7 | v7m6 +1 oct | 297 |
34 | 2017.321 | 19/6, 16/5, 29/9, 13/4 | ^^m6 +1 oct | 306 |
35 | 2076.654 | 23/7, 10/3, 27/8 | vvvM6 +1 oct | 315 |
36 | 2135.987 | 17/5, 24/7, 31/9 | ^6M6 +1 oct | 324 |
37 | 2195.320 | 7/2, 32/9, 25/7, 18/5 | vm7 +1 oct | 333 |
38 | 2254.653 | 29/8, 11/3, 26/7 | v6M7 +1 oct | 342 |
39 | 2313.986 | 15/4, 19/5, 23/6, 27/7 | ^^^M7 +1 oct | 351 |
40 | 2373.319 | 31/8, 4/1 | v41 +2 oct | 360 |
41 | 2432.652 | 29/7 | ^51 +2 oct | 369 |
42 | 2491.985 | 25/6, 21/5, 17/4, 30/7 | vvm2 +2 oct | 378 |
43 | 2551.318 | 13/3, 22/5, 31/7 | ~2 +2 oct | 387 |
44 | 2610.651 | 9/2, 32/7 | ^^M2 +2 oct | 396 |
45 | 2669.984 | 23/5, 14/3, 19/4 | v5m3 +2 oct | 405 |
46 | 2729.317 | 24/5, 29/6 | ^4m3 +2 oct | 414 |
47 | 2788.650 | 5/1 | vM3 +2 oct | 423 |
48 | 2847.983 | 31/6, 26/5, 21/4 | v6A3 +2 oct, ^6d4 +2 oct | 432 |
49 | 2907.316 | 16/3, 27/5 | ^4 +2 oct | 441 |
50 | 2966.649 | 11/2, 28/5 | v4A4 +2 oct | 450 |
51 | 3025.982 | 17/3, 23/4, 29/5 | ^^^d5 +2 oct | 459 |
52 | 3085.315 | 6/1 | vv5 +2 oct | 468 |
53 | 3144.648 | 31/5, 25/4 | ^75 +2 oct | 477 |
54 | 3203.981 | 19/3, 32/5 | m6 +2 oct | 486 |
55 | 3263.314 | 13/2, 20/3 | v5M6 +2 oct | 495 |
56 | 3322.647 | 27/4 | ^4M6 +2 oct | 504 |
57 | 3381.980 | 7/1 | vvvm7 +2 oct | 513 |
58 | 3441.313 | 29/4, 22/3 | ^6m7 +2 oct | 522 |
59 | 3500.646 | 15/2, 23/3 | ^M7 +2 oct | 531 |
60 | 3559.979 | 31/4 | v61 +3 oct | 540 |
61 | 3619.312 | 8/1 | ^^^1 +3 oct | 549 |
62 | 3678.645 | 25/3, 17/2 | v4m2 +3 oct | 558 |
63 | 3737.978 | 26/3 | ^5m2 +3 oct | 567 |
64 | 3797.311 | 9/1 | M2 +3 oct | 576 |
65 | 3856.644 | 28/3 | v7m3 +3 oct | 585 |
66 | 3915.977 | 19/2, 29/3 | ^^m3 +3 oct | 594 |
67 | 3975.310 | 10/1 | vvvM3 +3 oct | 603 |
68 | 4034.643 | 31/3 | ^6M3 +3 oct | 612 |
69 | 4093.976 | 21/2, 32/3 | v4 +3 oct | 621 |
70 | 4153.309 | 11/1 | v6A4 +3 oct | 630 |
71 | 4212.642 | 23/2 | ^d5 +3 oct | 639 |
72 | 4271.975 | v45 +3 oct | 648 | |
73 | 4331.308 | 12/1 | ^55 +3 oct | 657 |
74 | 4390.641 | 25/2 | vvm6 +3 oct | 666 |
75 | 4449.974 | 13/1 | ~6 +3 oct | 675 |
76 | 4509.307 | 27/2 | ^^M6 +3 oct | 684 |
77 | 4568.640 | 14/1 | v5m7 +3 oct | 693 |
78 | 4627.972 | 29/2 | ^4m7 +3 oct | 702 |
79 | 4687.305 | 15/1 | vM7 +3 oct | 711 |
80 | 4746.638 | 31/2 | v6A7 +3 oct, ^6d1 +4 oct | 720 |
81 | 4805.971 | 16/1 | ^1 +4 oct | 729 |
82 | 4865.304 | v6m2 +4 oct | 738 | |
83 | 4924.637 | 17/1 | ^^^m2 +4 oct | 747 |
84 | 4983.970 | 18/1 | vvM2 +4 oct | 756 |
85 | 5043.303 | ^7M2 +4 oct | 765 | |
86 | 5102.636 | 19/1 | m3 +4 oct | 774 |
87 | 5161.969 | 20/1 | v5M3 +4 oct | 783 |
88 | 5221.302 | ^4M3 +4 oct | 792 | |
89 | 5280.635 | 21/1 | vvv4 +4 oct | 801 |
90 | 5339.968 | 22/1 | ^64 +4 oct | 810 |
91 | 5399.301 | 23/1 | ^A4 +4 oct, vd5 +4 oct | 819 |
92 | 5458.634 | v65 +4 oct | 828 | |
93 | 5517.967 | 24/1 | ^^^5 +4 oct | 837 |
94 | 5577.300 | 25/1 | v4m6 +4 oct | 846 |
95 | 5636.633 | 26/1 | ^5m6 +4 oct | 855 |
96 | 5695.966 | 27/1 | M6 +4 oct | 864 |
97 | 5755.299 | 28/1 | v7m7 +4 oct | 873 |
98 | 5814.632 | 29/1 | ^^m7 +4 oct | 882 |
99 | 5873.965 | 30/1 | vvvM7 +4 oct | 891 |
100 | 5933.298 | 31/1 | ^6M7 +4 oct | 900 |
101 | 5992.631 | 32/1 | v1 +5 oct | 909 |
Approximation to JI
The following table illustrates the representation of the 32-integer limit intervals in 71zpi. Prime harmonics are in bold; inconsistent intervals are in italic.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
14/1 | +0.186 | +0.314 |
11/5 | +0.346 | +0.583 |
17/8 | -0.370 | -0.624 |
31/22 | +0.388 | +0.654 |
21/13 | -0.408 | -0.688 |
25/19 | +0.451 | +0.759 |
26/3 | +0.595 | +1.003 |
30/29 | -0.641 | -1.081 |
31/10 | +0.733 | +1.236 |
32/9 | +0.770 | +1.297 |
15/14 | +0.777 | +1.309 |
19/16 | +0.848 | +1.429 |
15/1 | +0.963 | +1.623 |
23/12 | -1.007 | -1.698 |
27/10 | -1.105 | -1.863 |
25/16 | +1.299 | +2.189 |
29/28 | +1.418 | +2.390 |
27/22 | -1.451 | -2.445 |
31/2 | -1.603 | -2.702 |
29/2 | +1.605 | +2.705 |
29/6 | -1.695 | -2.857 |
31/28 | -1.789 | -3.016 |
31/27 | +1.839 | +3.099 |
11/1 | -1.991 | -3.355 |
14/11 | +2.177 | +3.669 |
23/4 | +2.292 | +3.864 |
5/1 | -2.336 | -3.938 |
14/5 | +2.523 | +4.252 |
32/27 | -2.530 | -4.264 |
31/30 | -2.566 | -4.325 |
25/11 | -2.682 | -4.520 |
26/9 | -2.705 | -4.559 |
19/5 | -2.787 | -4.697 |
24/7 | -2.858 | -4.817 |
26/15 | +2.931 | +4.940 |
15/11 | +2.954 | +4.979 |
14/3 | -3.113 | -5.247 |
19/11 | -3.133 | -5.280 |
31/29 | -3.208 | -5.406 |
3/1 | +3.300 | +5.561 |
27/2 | -3.442 | -5.800 |
16/13 | +3.474 | +5.856 |
29/22 | +3.595 | +6.060 |
28/27 | +3.628 | +6.115 |
16/5 | -3.635 | -6.127 |
24/17 | +3.670 | +6.185 |
13/7 | +3.708 | +6.250 |
21/16 | -3.883 | -6.544 |
26/1 | +3.894 | +6.564 |
29/10 | +3.941 | +6.642 |
16/11 | -3.981 | -6.709 |
32/3 | +4.069 | +6.858 |
19/13 | +4.323 | +7.285 |
32/31 | -4.369 | -7.363 |
10/9 | +4.405 | +7.424 |
23/20 | +4.629 | +7.801 |
25/1 | -4.673 | -7.875 |
21/19 | -4.731 | -7.974 |
22/9 | +4.750 | +8.006 |
25/13 | +4.773 | +8.045 |
25/14 | -4.859 | -8.190 |
31/6 | -4.903 | -8.263 |
29/18 | -4.995 | -8.418 |
29/27 | +5.046 | +8.505 |
19/1 | -5.123 | -8.635 |
31/9 | +5.138 | +8.660 |
25/21 | +5.182 | +8.733 |
11/3 | -5.290 | -8.916 |
19/14 | -5.310 | -8.949 |
5/3 | -5.636 | -9.499 |
26/11 | +5.885 | +9.919 |
16/1 | -5.971 | -10.064 |
27/26 | +6.004 | +10.120 |
19/15 | -6.087 | -10.258 |
8/7 | -6.158 | -10.378 |
26/5 | +6.231 | +10.502 |
32/15 | +6.406 | +10.796 |
14/9 | -6.413 | -10.808 |
17/7 | -6.528 | -11.002 |
24/13 | -6.566 | -11.067 |
9/1 | +6.599 | +11.122 |
9/2 | -6.741 | -11.362 |
28/9 | +6.928 | +11.676 |
16/15 | -6.935 | -11.688 |
13/5 | -7.110 | -11.982 |
16/7 | +7.183 | +12.106 |
32/1 | +7.369 | +12.420 |
13/11 | -7.455 | -12.565 |
21/5 | -7.518 | -12.671 |
32/29 | -7.576 | -12.769 |
10/3 | +7.704 | +12.985 |
31/26 | +7.843 | +13.219 |
21/11 | -7.864 | -13.253 |
25/3 | -7.972 | -13.437 |
19/7 | +8.031 | +13.535 |
22/3 | +8.050 | +13.568 |
31/18 | -8.202 | -13.824 |
29/9 | +8.346 | +14.066 |
19/3 | -8.423 | -14.196 |
31/3 | +8.438 | +14.221 |
25/7 | +8.481 | +14.294 |
26/25 | +8.567 | +14.439 |
11/9 | -8.590 | -14.478 |
9/5 | +8.936 | +15.060 |
26/19 | +9.018 | +15.199 |
23/18 | +9.033 | +15.225 |
16/3 | -9.271 | -15.625 |
32/11 | +9.360 | +15.775 |
29/20 | -9.399 | -15.842 |
13/1 | -9.446 | -15.920 |
21/8 | +9.457 | +15.940 |
14/13 | +9.632 | +16.234 |
17/12 | +9.671 | +16.299 |
32/5 | +9.705 | +16.357 |
27/14 | +9.712 | +16.369 |
21/17 | +9.828 | +16.563 |
21/1 | -9.854 | -16.609 |
13/8 | +9.866 | +16.628 |
27/1 | +9.899 | +16.684 |
3/2 | -10.041 | -16.923 |
28/3 | +10.227 | +17.237 |
17/13 | -10.236 | -17.252 |
22/15 | +10.386 | +17.505 |
15/13 | +10.409 | +17.544 |
23/17 | -10.678 | -17.997 |
31/15 | +10.774 | +18.159 |
7/5 | -10.818 | -18.232 |
24/19 | -10.889 | -18.352 |
10/1 | +11.004 | +18.546 |
23/8 | -11.048 | -18.620 |
29/26 | +11.051 | +18.625 |
11/7 | +11.163 | +18.815 |
25/9 | -11.272 | -18.998 |
25/24 | +11.339 | +19.112 |
22/1 | +11.350 | +19.129 |
31/14 | +11.551 | +19.468 |
29/3 | +11.645 | +19.627 |
19/9 | -11.723 | -19.757 |
29/4 | -11.736 | -19.779 |
31/1 | +11.738 | +19.782 |
27/11 | +11.890 | +20.039 |
32/25 | +12.042 | +20.295 |
27/5 | +12.235 | +20.621 |
23/6 | +12.333 | +20.786 |
15/2 | -12.377 | -20.860 |
32/19 | +12.492 | +21.055 |
28/15 | +12.564 | +21.175 |
16/9 | -12.571 | -21.187 |
31/20 | -12.607 | -21.248 |
13/3 | -12.746 | -21.481 |
17/4 | +12.970 | +21.860 |
11/10 | -12.995 | -21.901 |
7/1 | -13.154 | -22.170 |
2/1 | +13.340 | +22.484 |
28/1 | +13.527 | +22.798 |
24/5 | -13.676 | -23.049 |
22/5 | +13.686 | +23.067 |
17/16 | -13.711 | -23.108 |
31/11 | +13.728 | +23.138 |
26/21 | +13.749 | +23.172 |
29/15 | +13.982 | +23.565 |
24/11 | -14.021 | -23.632 |
29/23 | -14.028 | -23.643 |
31/5 | +14.074 | +23.720 |
15/7 | +14.117 | +23.793 |
19/8 | +14.188 | +23.913 |
30/1 | +14.304 | +24.107 |
24/23 | +14.348 | +24.182 |
27/20 | -14.446 | -24.347 |
19/17 | +14.559 | +24.537 |
27/25 | +14.572 | +24.559 |
25/8 | +14.639 | +24.673 |
30/23 | -14.669 | -24.724 |
29/14 | +14.759 | +24.874 |
31/4 | -14.943 | -25.185 |
29/1 | +14.945 | +25.189 |
25/17 | +15.009 | +25.297 |
27/19 | +15.022 | +25.318 |
29/12 | -15.035 | -25.341 |
20/17 | -15.307 | -25.798 |
11/2 | -15.331 | -25.839 |
28/23 | -15.446 | -26.033 |
28/11 | +15.517 | +26.153 |
23/2 | +15.633 | +26.347 |
5/2 | -15.677 | -26.422 |
28/5 | +15.863 | +26.736 |
27/16 | +15.870 | +26.748 |
24/1 | -16.012 | -26.987 |
25/22 | -16.022 | -27.004 |
13/9 | -16.045 | -27.043 |
19/10 | -16.127 | -27.181 |
12/7 | -16.199 | -27.301 |
30/11 | +16.294 | +27.463 |
31/25 | +16.410 | +27.658 |
7/3 | -16.454 | -27.731 |
22/19 | +16.473 | +27.764 |
6/1 | +16.640 | +28.045 |
27/4 | -16.782 | -28.284 |
32/13 | +16.815 | +28.340 |
31/19 | +16.861 | +28.417 |
29/11 | +16.936 | +28.544 |
8/5 | -16.975 | -28.610 |
26/7 | +17.048 | +28.734 |
23/7 | -17.206 | -28.999 |
32/21 | +17.223 | +29.028 |
31/23 | -17.236 | -29.049 |
29/5 | +17.281 | +29.126 |
11/8 | +17.321 | +29.193 |
17/5 | -17.346 | -29.234 |
23/22 | +17.623 | +29.703 |
17/11 | -17.691 | -29.817 |
31/16 | +17.709 | +29.847 |
20/9 | +17.745 | +29.908 |
23/10 | +17.969 | +30.285 |
25/2 | -18.013 | -30.359 |
28/25 | +18.200 | +30.674 |
31/12 | -18.243 | -30.747 |
19/2 | -18.464 | -31.119 |
11/6 | -18.631 | -31.400 |
28/19 | +18.650 | +31.433 |
6/5 | +18.976 | +31.983 |
27/23 | -19.074 | -32.148 |
8/1 | -19.312 | -32.548 |
27/13 | +19.345 | +32.604 |
30/19 | +19.427 | +32.742 |
7/4 | +19.498 | +32.862 |
29/25 | +19.618 | +33.064 |
17/1 | -19.682 | -33.172 |
18/17 | -19.711 | -33.222 |
9/7 | +19.753 | +33.292 |
17/14 | -19.868 | -33.486 |
13/12 | +19.907 | +33.551 |
18/1 | +19.940 | +33.606 |
29/19 | +20.068 | +33.823 |
9/4 | -20.082 | -33.845 |
15/8 | +20.275 | +34.172 |
13/10 | -20.450 | -34.466 |
23/21 | -20.506 | -34.560 |
32/7 | +20.523 | +34.589 |
17/15 | -20.645 | -34.796 |
22/13 | +20.796 | +35.049 |
21/10 | -20.858 | -35.155 |
23/13 | -20.914 | -35.249 |
29/16 | +20.917 | +35.253 |
20/3 | +21.045 | +35.469 |
31/13 | +21.183 | +35.703 |
22/21 | +21.204 | +35.737 |
25/6 | -21.313 | -35.921 |
31/21 | +21.592 | +36.391 |
32/23 | -21.604 | -36.412 |
19/6 | -21.763 | -36.680 |
20/7 | -21.835 | -36.800 |
18/11 | +21.930 | +36.961 |
18/5 | +22.276 | +37.544 |
23/9 | +22.374 | +37.709 |
8/3 | -22.611 | -38.109 |
13/2 | -22.786 | -38.404 |
21/4 | +22.798 | +38.424 |
28/13 | +22.973 | +38.718 |
17/3 | -22.982 | -38.733 |
17/6 | +23.011 | +38.783 |
27/7 | +23.053 | +38.853 |
21/2 | -23.195 | -39.093 |
13/4 | +23.206 | +39.112 |
4/3 | +23.381 | +39.407 |
26/17 | +23.576 | +39.736 |
30/13 | +23.750 | +40.028 |
10/7 | +24.158 | +40.716 |
19/12 | +24.229 | +40.836 |
20/1 | +24.344 | +41.030 |
23/16 | -24.388 | -41.104 |
29/13 | +24.391 | +41.109 |
22/7 | +24.504 | +41.299 |
25/18 | -24.612 | -41.482 |
25/12 | +24.680 | +41.595 |
29/17 | -24.706 | -41.639 |
29/21 | +24.799 | +41.797 |
31/7 | +24.891 | +41.952 |
19/18 | -25.063 | -42.241 |
29/8 | -25.076 | -42.263 |
26/23 | -25.079 | -42.268 |
21/20 | +25.134 | +42.361 |
23/19 | -25.237 | -42.534 |
30/17 | -25.347 | -42.721 |
20/13 | -25.543 | -43.050 |
23/3 | +25.673 | +43.270 |
25/23 | +25.687 | +43.293 |
15/4 | -25.718 | -43.344 |
9/8 | +25.911 | +43.671 |
13/6 | -26.086 | -43.965 |
28/17 | -26.124 | -44.030 |
18/7 | -26.239 | -44.224 |
17/9 | -26.281 | -44.294 |
17/2 | +26.311 | +44.344 |
20/11 | +26.335 | +44.385 |
7/2 | -26.494 | -44.654 |
4/1 | +26.681 | +44.968 |
12/5 | -27.016 | -45.533 |
32/17 | +27.051 | +45.592 |
12/11 | -27.362 | -46.116 |
30/7 | +27.458 | +46.277 |
19/4 | +27.529 | +46.397 |
31/24 | +27.750 | +46.769 |
31/17 | -27.913 | -47.045 |
25/4 | +27.979 | +47.157 |
23/15 | +28.010 | +47.208 |
23/5 | -28.023 | -47.231 |
29/7 | +28.099 | +47.358 |
31/8 | -28.284 | -47.669 |
22/17 | -28.301 | -47.699 |
23/11 | -28.369 | -47.813 |
29/24 | -28.376 | -47.824 |
17/10 | +28.647 | +48.282 |
11/4 | -28.671 | -48.323 |
23/14 | +28.787 | +48.517 |
23/1 | +28.973 | +48.831 |
5/4 | -29.017 | -48.906 |
27/8 | +29.211 | +49.232 |
12/1 | -29.353 | -49.471 |
18/13 | +29.386 | +49.526 |
20/19 | +29.468 | +49.665 |
7/6 | +29.539 | +49.785 |
27/17 | +29.581 | +49.856 |
Record on the Riemann zeta function with prime 2 removed
71zpi sets a height record on the Riemann zeta function with prime 2 removed. The previous record is 53zpi and the next one is 93zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime number 2 from the Riemann zeta function differs slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with prime 2 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
53zpi | 16.3979501311478 | 73.1798786069366 | 2.518818 | 16edo | 1170.87805771099 | 16.4044889390925 | 73.1507092025500 | 4.100909 | 16edo | 1170.41134724080 |
71zpi | 20.2248393119540 | 59.3329806724710 | 3.531097 | 20edo | 1186.65961344942 | 20.2459529213541 | 59.2711049295348 | 4.137236 | 20edo | 1185.42209859070 |
93zpi | 24.5782550666850 | 48.8236449961234 | 2.810487 | 25edo | 1220.59112490308 | 24.5738316304204 | 48.8324335434323 | 4.665720 | 25edo | 1220.81083858581 |
71zpi with prime 2 removed
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -14.6 | -5.3 | -29.2 | -0.6 | -19.9 | +9.6 | +15.5 | -10.6 | -15.1 | -2.3 | +24.8 | +4.8 | -5.0 | -5.9 | +1.0 |
Relative (%) | -24.6 | -8.9 | -49.2 | -1.0 | -33.5 | +16.2 | +26.2 | -17.8 | -25.6 | -3.9 | +41.9 | +8.1 | -8.4 | -9.9 | +1.6 | |
Step | 20 | 32 | 40 | 47 | 52 | 57 | 61 | 64 | 67 | 70 | 73 | 75 | 77 | 79 | 81 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +14.5 | -25.1 | -0.2 | +29.5 | +4.3 | -16.9 | +24.7 | +10.3 | -1.1 | -9.8 | -15.8 | -19.5 | -21.0 | -20.4 | -17.9 | -13.6 | -7.6 | -0.0 |
Relative (%) | +24.5 | -42.4 | -0.3 | +49.8 | +7.3 | -28.5 | +41.6 | +17.3 | -1.9 | -16.5 | -26.7 | -32.9 | -35.4 | -34.5 | -30.2 | -23.0 | -12.9 | -0.1 | |
Step | 83 | 84 | 86 | 88 | 89 | 90 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
JI ratios are comprised of 32-integer limit ratios, and are stylized as follows to indicate their accuracy:
|
Octave = 81 steps Fifth = 47 steps Whole tone = 13 steps Limma = 8 steps Apotome = 5 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 59.271 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19 | vA1, ^d2 | 4 |
2 | 118.542 | 19/18, 18/17, 17/16, 16/15, 31/29, 15/14, 29/27, 14/13, 27/25, 13/12, 25/23 | m2 | 8 |
3 | 177.813 | 12/11, 23/21, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8 | vM2 | 12 |
4 | 237.084 | 26/23, 17/15, 25/22, 8/7, 31/27, 23/20, 15/13, 22/19, 29/25 | vvA2 | 16 |
5 | 296.356 | 7/6, 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26, 6/5 | vm3 | 20 |
6 | 355.627 | 29/24, 23/19, 17/14, 28/23, 11/9, 27/22, 16/13, 21/17, 26/21, 31/25 | vvM3 | 24 |
7 | 414.898 | 5/4, 29/23, 24/19, 19/15, 14/11, 23/18, 32/25, 9/7, 31/24 | ^^M3 | 28 |
8 | 474.169 | 22/17, 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 4/3 | vv4 | 32 |
9 | 533.440 | 31/23, 27/20, 23/17, 19/14, 15/11, 26/19, 11/8, 29/21 | ^^4 | 36 |
10 | 592.711 | 18/13, 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19, 10/7 | ^A4 | 40 |
11 | 651.982 | 23/16, 13/9, 29/20, 16/11, 19/13, 22/15, 25/17, 28/19, 31/21 | ^^d5 | 44 |
12 | 711.253 | 3/2, 32/21, 29/19, 26/17, 23/15 | ^5 | 48 |
13 | 770.524 | 20/13, 17/11, 31/20, 14/9, 25/16, 11/7, 30/19, 19/12 | ^^d6 | 52 |
14 | 829.795 | 27/17, 8/5, 29/18, 21/13, 13/8, 31/19, 18/11 | ^m6 | 56 |
15 | 889.067 | 23/14, 28/17, 5/3, 32/19, 27/16, 22/13, 17/10 | M6 | 60 |
16 | 948.338 | 29/17, 12/7, 31/18, 19/11, 26/15, 7/4 | vA6, ^d7 | 64 |
17 | 1007.609 | 30/17, 23/13, 16/9, 25/14, 9/5, 29/16, 20/11 | m7 | 68 |
18 | 1066.880 | 31/17, 11/6, 24/13, 13/7, 28/15, 15/8, 32/17 | vM7 | 72 |
19 | 1126.151 | 17/9, 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | vvA7 | 76 |
20 | 1185.422 | 2/1 | v1 +1 oct | 80 |
21 | 1244.693 | 31/15, 29/14, 27/13, 25/12 | vvA1 +1 oct | 84 |
22 | 1303.964 | 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13 | vm2 +1 oct | 88 |
23 | 1363.235 | 13/6, 24/11, 11/5, 31/14, 20/9, 29/13 | vvM2 +1 oct | 92 |
24 | 1422.507 | 9/4, 25/11, 16/7, 23/10, 30/13 | ^^M2 +1 oct | 96 |
25 | 1481.778 | 7/3, 26/11, 19/8, 31/13 | vvm3 +1 oct | 100 |
26 | 1541.049 | 12/5, 29/12, 17/7, 22/9, 27/11, 32/13 | ^^m3 +1 oct | 104 |
27 | 1600.320 | 5/2, 28/11, 23/9 | ^M3 +1 oct | 108 |
28 | 1659.591 | 18/7, 31/12, 13/5, 21/8, 29/11 | ^^d4 +1 oct | 112 |
29 | 1718.862 | 8/3, 27/10, 19/7, 30/11 | ^4 +1 oct | 116 |
30 | 1778.133 | 11/4, 25/9, 14/5, 31/11, 17/6 | A4 +1 oct | 120 |
31 | 1837.404 | 20/7, 23/8, 26/9, 29/10, 32/11 | ^d5 +1 oct | 124 |
32 | 1896.675 | 3/1 | P5 +1 oct | 128 |
33 | 1955.946 | 31/10, 28/9, 25/8, 22/7 | vA5 +1 oct, ^d6 +1 oct | 132 |
34 | 2015.218 | 19/6, 16/5, 29/9, 13/4 | m6 +1 oct | 136 |
35 | 2074.489 | 23/7, 10/3 | vM6 +1 oct | 140 |
36 | 2133.760 | 27/8, 17/5, 24/7, 31/9 | vvA6 +1 oct | 144 |
37 | 2193.031 | 7/2, 32/9, 25/7, 18/5 | vm7 +1 oct | 148 |
38 | 2252.302 | 29/8, 11/3, 26/7 | vvM7 +1 oct | 152 |
39 | 2311.573 | 15/4, 19/5, 23/6, 27/7 | ^^M7 +1 oct | 156 |
40 | 2370.844 | 31/8, 4/1 | vv1 +2 oct | 160 |
41 | 2430.115 | ^^1 +2 oct | 164 | |
42 | 2489.386 | 29/7, 25/6, 21/5, 17/4 | vvm2 +2 oct | 168 |
43 | 2548.658 | 30/7, 13/3, 22/5, 31/7 | ^^m2 +2 oct | 172 |
44 | 2607.929 | 9/2, 32/7 | ^M2 +2 oct | 176 |
45 | 2667.200 | 23/5, 14/3 | ^^d3 +2 oct | 180 |
46 | 2726.471 | 19/4, 24/5, 29/6 | ^m3 +2 oct | 184 |
47 | 2785.742 | 5/1 | M3 +2 oct | 188 |
48 | 2845.013 | 31/6, 26/5, 21/4 | vA3 +2 oct, ^d4 +2 oct | 192 |
49 | 2904.284 | 16/3, 27/5 | P4 +2 oct | 196 |
50 | 2963.555 | 11/2, 28/5 | vA4 +2 oct | 200 |
51 | 3022.826 | 17/3, 23/4, 29/5 | d5 +2 oct | 204 |
52 | 3082.097 | 6/1 | v5 +2 oct | 208 |
53 | 3141.369 | 31/5 | vvA5 +2 oct | 212 |
54 | 3200.640 | 25/4, 19/3, 32/5 | vm6 +2 oct | 216 |
55 | 3259.911 | 13/2, 20/3 | vvM6 +2 oct | 220 |
56 | 3319.182 | 27/4 | ^^M6 +2 oct | 224 |
57 | 3378.453 | 7/1 | vvm7 +2 oct | 228 |
58 | 3437.724 | 29/4, 22/3 | ^^m7 +2 oct | 232 |
59 | 3496.995 | 15/2, 23/3 | ^M7 +2 oct | 236 |
60 | 3556.266 | 31/4 | ^^d1 +3 oct | 240 |
61 | 3615.537 | 8/1 | ^1 +3 oct | 244 |
62 | 3674.809 | 25/3 | ^^d2 +3 oct | 248 |
63 | 3734.080 | 17/2, 26/3 | ^m2 +3 oct | 252 |
64 | 3793.351 | 9/1 | M2 +3 oct | 256 |
65 | 3852.622 | 28/3 | vA2 +3 oct, ^d3 +3 oct | 260 |
66 | 3911.893 | 19/2, 29/3 | m3 +3 oct | 264 |
67 | 3971.164 | 10/1 | vM3 +3 oct | 268 |
68 | 4030.435 | 31/3 | vvA3 +3 oct | 272 |
69 | 4089.706 | 21/2, 32/3 | v4 +3 oct | 276 |
70 | 4148.977 | 11/1 | vvA4 +3 oct | 280 |
71 | 4208.248 | 23/2 | vd5 +3 oct | 284 |
72 | 4267.520 | vv5 +3 oct | 288 | |
73 | 4326.791 | 12/1 | ^^5 +3 oct | 292 |
74 | 4386.062 | 25/2 | vvm6 +3 oct | 296 |
75 | 4445.333 | 13/1 | ^^m6 +3 oct | 300 |
76 | 4504.604 | 27/2 | ^M6 +3 oct | 304 |
77 | 4563.875 | 14/1 | ^^d7 +3 oct | 308 |
78 | 4623.146 | 29/2 | ^m7 +3 oct | 312 |
79 | 4682.417 | 15/1 | M7 +3 oct | 316 |
80 | 4741.688 | 31/2 | vA7 +3 oct, ^d1 +4 oct | 320 |
81 | 4800.959 | 16/1 | P1 +4 oct | 324 |
82 | 4860.231 | vA1 +4 oct, ^d2 +4 oct | 328 | |
83 | 4919.502 | 17/1 | m2 +4 oct | 332 |
84 | 4978.773 | 18/1 | vM2 +4 oct | 336 |
85 | 5038.044 | vvA2 +4 oct | 340 | |
86 | 5097.315 | 19/1 | vm3 +4 oct | 344 |
87 | 5156.586 | vvM3 +4 oct | 348 | |
88 | 5215.857 | 20/1 | ^^M3 +4 oct | 352 |
89 | 5275.128 | 21/1 | vv4 +4 oct | 356 |
90 | 5334.399 | 22/1 | ^^4 +4 oct | 360 |
91 | 5393.671 | ^A4 +4 oct | 364 | |
92 | 5452.942 | 23/1 | ^^d5 +4 oct | 368 |
93 | 5512.213 | 24/1 | ^5 +4 oct | 372 |
94 | 5571.484 | 25/1 | ^^d6 +4 oct | 376 |
95 | 5630.755 | 26/1 | ^m6 +4 oct | 380 |
96 | 5690.026 | 27/1 | M6 +4 oct | 384 |
97 | 5749.297 | 28/1 | vA6 +4 oct, ^d7 +4 oct | 388 |
98 | 5808.568 | 29/1 | m7 +4 oct | 392 |
99 | 5867.839 | 30/1 | vM7 +4 oct | 396 |
100 | 5927.110 | 31/1 | vvA7 +4 oct | 400 |
101 | 5986.382 | 32/1 | v1 +5 oct | 404 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
23/12 | +0.168 | +0.284 |
19/1 | +0.198 | +0.334 |
14/3 | -0.329 | -0.555 |
19/5 | -0.374 | -0.631 |
21/13 | +0.458 | +0.772 |
5/1 | +0.572 | +0.965 |
30/29 | -0.580 | -0.978 |
24/7 | -0.631 | -1.064 |
27/10 | +0.689 | +1.163 |
26/9 | -0.787 | -1.327 |
15/14 | +0.901 | +1.519 |
25/19 | +0.946 | +1.595 |
16/1 | -0.959 | -1.619 |
17/8 | +0.991 | +1.672 |
31/22 | +1.007 | +1.698 |
27/22 | -1.080 | -1.821 |
25/1 | +1.144 | +1.929 |
29/6 | +1.151 | +1.943 |
19/16 | +1.157 | +1.953 |
25/11 | -1.197 | -2.020 |
27/2 | +1.261 | +2.128 |
29/28 | +1.480 | +2.497 |
16/5 | -1.531 | -2.584 |
31/28 | -1.604 | -2.706 |
11/5 | +1.769 | +2.984 |
31/6 | -1.932 | -3.260 |
31/27 | +2.086 | +3.520 |
25/16 | +2.103 | +3.548 |
19/11 | -2.143 | -3.615 |
32/27 | -2.221 | -3.746 |
11/1 | +2.341 | +3.949 |
31/30 | -2.504 | -4.225 |
14/11 | +2.610 | +4.404 |
31/10 | +2.775 | +4.683 |
11/3 | -2.939 | -4.959 |
32/9 | +3.059 | +5.161 |
31/29 | -3.084 | -5.203 |
16/11 | -3.300 | -5.568 |
31/2 | +3.347 | +5.647 |
21/16 | -3.388 | -5.716 |
15/11 | +3.511 | +5.923 |
28/27 | +3.690 | +6.225 |
25/14 | -3.807 | -6.423 |
16/13 | +3.846 | +6.488 |
26/15 | +3.921 | +6.616 |
9/2 | -4.019 | -6.780 |
29/22 | +4.090 | +6.901 |
29/18 | -4.128 | -6.965 |
25/3 | -4.136 | -6.978 |
24/17 | +4.289 | +7.235 |
32/31 | -4.307 | -7.266 |
21/1 | -4.347 | -7.335 |
14/5 | +4.379 | +7.388 |
26/3 | +4.493 | +7.581 |
21/19 | -4.545 | -7.669 |
10/9 | +4.590 | +7.745 |
5/3 | -4.708 | -7.943 |
19/14 | -4.753 | -8.019 |
13/1 | -4.805 | -8.107 |
13/7 | +4.822 | +8.135 |
23/20 | +4.876 | +8.227 |
21/5 | -4.919 | -8.300 |
17/7 | -4.919 | -8.300 |
14/1 | +4.951 | +8.353 |
19/13 | +5.003 | +8.441 |
19/3 | -5.082 | -8.574 |
29/27 | +5.170 | +8.723 |
3/1 | +5.280 | +8.908 |
13/5 | -5.377 | -9.072 |
23/4 | +5.448 | +9.192 |
24/13 | -5.453 | -9.199 |
25/21 | +5.491 | +9.264 |
14/9 | -5.608 | -9.462 |
19/15 | -5.653 | -9.538 |
15/1 | +5.851 | +9.872 |
29/10 | +5.859 | +9.885 |
8/7 | -5.910 | -9.972 |
25/13 | +5.949 | +10.037 |
27/26 | +6.066 | +10.235 |
16/3 | -6.239 | -10.526 |
22/9 | +6.359 | +10.729 |
29/2 | +6.431 | +10.850 |
21/11 | -6.688 | -11.284 |
16/15 | -6.811 | -11.491 |
13/11 | -7.146 | -12.056 |
31/18 | -7.212 | -12.168 |
31/9 | +7.366 | +12.427 |
32/29 | -7.391 | -12.469 |
26/11 | +7.432 | +12.539 |
32/15 | +7.767 | +13.104 |
29/4 | -8.147 | -13.745 |
31/26 | +8.152 | +13.754 |
11/9 | -8.219 | -13.866 |
32/3 | +8.339 | +14.069 |
26/25 | +8.629 | +14.559 |
16/7 | +8.668 | +14.624 |
29/20 | -8.719 | -14.710 |
15/2 | -8.726 | -14.723 |
28/9 | +8.969 | +15.133 |
23/8 | -9.130 | -15.404 |
26/5 | +9.201 | +15.523 |
3/2 | -9.298 | -15.688 |
25/9 | -9.416 | -15.886 |
23/18 | +9.467 | +15.972 |
26/19 | +9.575 | +16.154 |
7/1 | -9.627 | -16.242 |
17/13 | -9.741 | -16.435 |
14/13 | +9.756 | +16.460 |
26/1 | +9.773 | +16.488 |
19/7 | +9.825 | +16.576 |
10/3 | +9.870 | +16.652 |
9/5 | +9.988 | +16.851 |
13/3 | -10.085 | -17.015 |
23/17 | -10.121 | -17.076 |
7/5 | -10.199 | -17.207 |
21/17 | +10.199 | +17.207 |
24/1 | -10.258 | -17.307 |
17/12 | +10.289 | +17.360 |
19/9 | -10.361 | -17.481 |
29/9 | +10.450 | +17.630 |
24/19 | -10.456 | -17.641 |
9/1 | +10.559 | +17.815 |
15/13 | +10.657 | +17.979 |
13/8 | +10.732 | +18.107 |
25/7 | +10.771 | +18.172 |
24/5 | -10.830 | -18.271 |
27/14 | +10.888 | +18.370 |
22/15 | +11.067 | +18.672 |
21/8 | +11.190 | +18.879 |
31/4 | -11.231 | -18.948 |
29/26 | +11.236 | +18.957 |
32/11 | +11.278 | +19.027 |
25/24 | +11.401 | +19.236 |
16/9 | -11.519 | -19.434 |
22/3 | +11.639 | +19.637 |
31/20 | -11.803 | -19.913 |
11/7 | +11.968 | +20.191 |
31/15 | +12.074 | +20.370 |
11/2 | -12.237 | -20.646 |
32/25 | +12.475 | +21.047 |
24/11 | -12.598 | -21.255 |
31/3 | +12.645 | +21.335 |
11/10 | -12.809 | -21.611 |
31/14 | +12.974 | +21.890 |
32/5 | +13.047 | +22.012 |
27/4 | -13.317 | -22.468 |
32/19 | +13.420 | +22.642 |
29/12 | -13.427 | -22.653 |
25/2 | -13.434 | -22.666 |
27/11 | +13.498 | +22.774 |
17/16 | -13.587 | -22.923 |
29/23 | -13.595 | -22.937 |
32/1 | +13.618 | +22.976 |
28/15 | +13.677 | +23.076 |
27/20 | -13.889 | -23.432 |
5/2 | -14.006 | -23.631 |
26/21 | +14.120 | +23.823 |
30/23 | -14.174 | -23.915 |
28/3 | +14.249 | +24.041 |
19/2 | -14.380 | -24.261 |
24/23 | +14.410 | +24.311 |
17/1 | -14.546 | -24.542 |
2/1 | +14.578 | +24.595 |
27/25 | +14.695 | +24.793 |
19/17 | +14.744 | +24.876 |
23/6 | +14.746 | +24.879 |
7/3 | -14.907 | -25.150 |
19/10 | -14.952 | -25.226 |
20/17 | -14.997 | -25.303 |
23/7 | -15.040 | -25.375 |
28/23 | -15.075 | -25.434 |
17/5 | -15.118 | -25.507 |
10/1 | +15.150 | +25.560 |
29/15 | +15.157 | +25.573 |
12/7 | -15.209 | -25.659 |
27/5 | +15.267 | +25.758 |
13/9 | -15.364 | -25.922 |
15/7 | +15.478 | +26.115 |
8/1 | -15.537 | -26.214 |
17/4 | +15.569 | +26.267 |
31/11 | +15.584 | +26.294 |
27/19 | +15.641 | +26.389 |
25/17 | +15.690 | +26.471 |
29/3 | +15.729 | +26.538 |
19/8 | +15.735 | +26.548 |
25/22 | -15.775 | -26.615 |
27/1 | +15.839 | +26.723 |
29/14 | +16.058 | +27.093 |
8/5 | -16.109 | -27.179 |
22/5 | +16.347 | +27.580 |
31/12 | -16.510 | -27.856 |
31/23 | -16.679 | -28.140 |
25/8 | +16.681 | +28.144 |
22/19 | +16.721 | +28.210 |
31/25 | +16.782 | +28.313 |
27/16 | +16.798 | +28.342 |
17/11 | -16.887 | -28.491 |
22/1 | +16.918 | +28.544 |
28/11 | +17.188 | +28.999 |
31/5 | +17.353 | +29.278 |
11/6 | -17.517 | -29.554 |
23/22 | +17.685 | +29.838 |
31/19 | +17.727 | +29.908 |
11/8 | +17.878 | +30.163 |
31/1 | +17.925 | +30.243 |
32/21 | +17.966 | +30.311 |
30/11 | +18.089 | +30.519 |
28/25 | +18.385 | +31.019 |
32/13 | +18.424 | +31.084 |
9/4 | -18.597 | -31.375 |
29/11 | +18.668 | +31.496 |
25/6 | -18.714 | -31.574 |
27/23 | -18.765 | -31.659 |
31/16 | +18.885 | +31.861 |
21/2 | -18.925 | -31.930 |
28/5 | +18.957 | +31.983 |
20/9 | +19.168 | +32.340 |
6/5 | +19.286 | +32.538 |
28/19 | +19.331 | +32.614 |
13/2 | -19.383 | -32.702 |
26/7 | +19.400 | +32.731 |
23/10 | +19.454 | +32.822 |
21/10 | -19.497 | -32.895 |
17/14 | -19.497 | -32.895 |
28/1 | +19.529 | +32.948 |
18/17 | -19.588 | -33.047 |
19/6 | -19.660 | -33.169 |
17/3 | -19.826 | -33.450 |
6/1 | +19.858 | +33.503 |
23/13 | -19.862 | -33.511 |
29/25 | +19.865 | +33.516 |
20/7 | -19.916 | -33.602 |
13/10 | -19.955 | -33.667 |
23/2 | +20.026 | +33.787 |
13/12 | +20.030 | +33.795 |
9/7 | +20.186 | +34.058 |
30/19 | +20.231 | +34.134 |
23/21 | -20.320 | -34.283 |
17/15 | -20.398 | -34.414 |
30/1 | +20.429 | +34.468 |
29/5 | +20.437 | +34.481 |
7/4 | +20.488 | +34.567 |
27/13 | +20.644 | +34.830 |
29/19 | +20.811 | +35.111 |
8/3 | -20.817 | -35.122 |
32/23 | -20.985 | -35.406 |
29/1 | +21.009 | +35.445 |
22/21 | +21.266 | +35.879 |
15/8 | +21.389 | +36.086 |
22/13 | +21.724 | +36.651 |
29/16 | +21.968 | +37.064 |
31/21 | +22.273 | +37.577 |
29/8 | -22.725 | -38.340 |
31/13 | +22.730 | +38.350 |
18/11 | +22.797 | +38.462 |
32/7 | +23.245 | +39.219 |
15/4 | -23.304 | -39.318 |
23/16 | -23.708 | -39.999 |
29/17 | -23.716 | -40.013 |
4/3 | +23.876 | +40.283 |
25/18 | -23.994 | -40.481 |
23/9 | +24.045 | +40.567 |
7/2 | -24.205 | -40.838 |
30/17 | -24.295 | -40.990 |
26/17 | +24.319 | +41.030 |
28/13 | +24.334 | +41.055 |
20/3 | +24.448 | +41.248 |
18/7 | -24.507 | -41.347 |
18/5 | +24.565 | +41.446 |
13/6 | -24.663 | -41.610 |
23/1 | -24.667 | -41.618 |
20/13 | -24.738 | -41.738 |
10/7 | +24.777 | +41.802 |
26/23 | -24.831 | -41.894 |
12/1 | -24.836 | -41.902 |
23/19 | -24.865 | -41.952 |
17/6 | +24.867 | +41.955 |
19/18 | -24.939 | -42.076 |
19/12 | +25.034 | +42.236 |
17/9 | -25.106 | -42.357 |
18/1 | +25.137 | +42.411 |
28/17 | -25.196 | -42.510 |
21/20 | +25.196 | +42.510 |
30/13 | +25.235 | +42.575 |
23/5 | -25.239 | -42.582 |
13/4 | +25.310 | +42.702 |
29/21 | +25.356 | +42.780 |
12/5 | -25.407 | -42.866 |
27/7 | +25.466 | +42.965 |
21/4 | +25.768 | +43.475 |
31/8 | -25.809 | -43.543 |
25/23 | +25.811 | +43.547 |
29/13 | +25.814 | +43.553 |
25/12 | +25.979 | +43.831 |
9/8 | +26.097 | +44.029 |
22/7 | +26.546 | +44.787 |
31/17 | -26.800 | -45.215 |
11/4 | -26.815 | -45.242 |
23/11 | -27.008 | -45.567 |
12/11 | -27.176 | -45.851 |
20/11 | +27.387 | +46.206 |
31/7 | +27.552 | +46.485 |
22/17 | -27.806 | -46.914 |
27/8 | -27.895 | -47.063 |
29/24 | -28.004 | -47.248 |
25/4 | -28.012 | -47.261 |
32/17 | +28.165 | +47.518 |
31/24 | +28.183 | +47.549 |
5/4 | -28.584 | -48.226 |
29/7 | -28.635 | -48.312 |
23/15 | +28.752 | +48.510 |
27/17 | -28.886 | -48.735 |
19/4 | -28.958 | -48.857 |
17/2 | -29.124 | -49.137 |
4/1 | +29.156 | +49.191 |
30/7 | -29.215 | -49.290 |
23/3 | +29.324 | +49.475 |
18/13 | -29.329 | -49.482 |
7/6 | -29.485 | -49.745 |
20/19 | +29.530 | +49.821 |
20/1 | -29.544 | -49.845 |
17/10 | +29.575 | +49.898 |
23/14 | -29.618 | -49.971 |