User:Ganaram inukshuk/Tables

Revision as of 08:08, 29 December 2022 by Ganaram inukshuk (talk | contribs) (Mos-temperament table: Table broke, was also similar to the scale table in a way)

This page is for xen-related tables that I've made but don't have an exact place elsewhere on the wiki (yet).

Scale Table

I've had the idea of using a rectangular horogram to represent how mosses of a specific generator pair are related to one another, only to learn that I can copy-paste the entire tables from Excel into the wiki editor. I doubt I'd be the first person to do this, but this would be a nice way to list the mosses of an edo. The idea to include scale and step ratio information occurred mid-editing. Here's a few examples.

Temperament Agnostic Information Only

Notes:

  • The generator pairs are ordered starting from ceil(n/2)\n and floor(n/2)\n and ending at (n-2)\n and 2\n. Including every possible pair from 1\n to (n-1)\n to (n-1)\n to 1\n would be redundant since the pair k\n and (n-k)\n would produce a table that's identical to (n-k)\n and k\n but reversed.
  • (n-1)\n and 1\n is not included since it produces a sequence of "monolarge" scales where every scale in the table has the same size of small step.
  • Information from the page for 19edo and its subpages (as of time of writing) is used as sample data.
  • A few unnamed mosses are given tentative names based on names from their respective pages (EG, klesitonic) or based on existing names (EG, tetric).
Step Pattern (19edo) Mos Step Ratio TAMNAMS Name (if applicable)
10 9 1L 1s 10:9 Generator Pair
1 9 9 2L 1s 9:1
1 1 8 1 8 2L 3s 8:1 Pentic
1 1 1 7 1 1 7 2L 5s 7:1 Antidiatonic
1 1 1 1 6 1 1 1 6 2L 7s 6:1 Joanatonic
1 1 1 1 1 5 1 1 1 1 5 2L 9s 5:1
1 1 1 1 1 1 4 1 1 1 1 1 4 2L 11s 4:1
1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 2L 13s 3:1
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2L 15s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) Mos Step Ratio TAMNAMS Name (if applicable)
11 8 1L 1s 11:8 Generator Pair
3 8 8 2L 1s 8:3
3 3 5 3 5 2L 3s 5:3 Pentic
3 3 3 2 3 3 2 5L 2s 3:2 Diatonic
1 2 1 2 1 2 2 1 2 1 2 2 7L 5s 2:1 M-chromatic
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) Mos Step Ratio TAMNAMS Name (if applicable)
12 7 1L 1s 12:7 Generator Pair
5 7 7 2L 1s 7:5
5 5 2 5 2 3L 2s 5:2 Antipentic
3 2 3 2 2 3 2 2 3L 5s 3:2 Sensoid
1 2 2 1 2 2 2 1 2 2 2 8L 3s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) Mos Step Ratio TAMNAMS Name (if applicable)
13 6 1L 1s 13:6 Generator Pair
7 6 6 1L 2s 7:6
1 6 6 6 3L 1s 6:1 Tetric (placeholder name for sake of completness)
1 1 5 1 5 1 5 3L 4s 5:1 Mosh
1 1 1 4 1 1 4 1 1 4 3L 7s 4:1 Sephiroid
1 1 1 1 3 1 1 1 3 1 1 1 3 3L 10s 3:1
1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 3L 13s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) Mos Step Ratio TAMNAMS Name (if applicable)
14 5 1L 1s 14:5 Generator Pair
9 5 5 1L 2s 9:5
4 5 5 5 3L 1s 5:4 Tetric
4 4 1 4 1 4 1 4L 3s 4:1 Smitonic
3 1 3 1 1 3 1 1 3 1 1 4L 7s 3:1 Kleistonic (proposed name from 4L 7s page)
2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 4L 11s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) Mos Step Ratio TAMNAMS Name (if applicable)
15 4 1L 1s 15:4 Generator Pair
11 4 4 1L 2s 11:4
7 4 4 4 1L 3s 7:4
3 4 4 4 4 4L 1s 4:3 Manic
3 3 1 3 1 3 1 3 1 5L 4s 3:1 Semiquartal
2 1 2 1 1 2 1 1 2 1 1 2 1 1 5L 9s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) Mos Step Ratio TAMNAMS Name (if applicable)
16 3 1L 1s 16:3 Generator Pair
13 3 3 1L 2s 13:3
10 3 3 3 1L 3s 10:3
7 3 3 3 3 1L 4s 7:3
4 3 3 3 3 3 1L 5s 4:3
1 3 3 3 3 3 3 6L 1s 3:1 Archeotonic
1 1 2 1 2 1 2 1 2 1 2 1 2 6L 7s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) Mos Step Ratio TAMNAMS Name (if applicable)
17 2 1L 1s 17:2 Generator Pair
15 2 2 1L 2s 15:2
13 2 2 2 1L 3s 13:2
11 2 2 2 2 1L 4s 11:2
9 2 2 2 2 2 1L 5s 9:2
7 2 2 2 2 2 2 1L 6s 7:2
5 2 2 2 2 2 2 2 1L 7s 5:2
3 2 2 2 2 2 2 2 2 1L 8s 3:2
1 2 2 2 2 2 2 2 2 2 9L 1s 2:1 Sinatonic
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

General (Temperament-Agnostic) Information and Temperament Information

Notes:

  • The generator pairs are ordered starting from ceil(n/2)\n and floor(n/2)\n and ending at (n-2)\n and 2\n. Including every possible pair from 1\n to (n-1)\n to (n-1)\n to 1\n would be redundant since the pair k\n and (n-k)\n would produce a table that's identical to (n-k)\n and k\n but reversed.
  • (n-1)\n and 1\n is not included since it produces a sequence of "monolarge" scales where every scale in the table has the same size of small step.
  • Information from the page for 19edo and its subpages (as of time of writing) is used as sample data.
  • A few unnamed mosses are given tentative names based on names from their respective pages (EG, klesitonic) or based on existing names (EG, tetric).
  • Scale codes are given for scales whose step sizes are single-digit numbers.
Step Pattern General Information Temperament Information
Generator pair of 10\19 and 9\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
10 9 1L 1s 10:9
1 9 9 199 2L 1s 9:1
1 1 8 1 8 11818 2L 3s 8:1 pentic liese[5]
1 1 1 7 1 1 7 1117117 2L 5s 7:1 antidiatonic liese[7]
1 1 1 1 6 1 1 1 6 111161116 2L 7s 6:1 joanatonic liese[9]
1 1 1 1 1 5 1 1 1 1 5 11111511115 2L 9s 5:1 liese[11]
1 1 1 1 1 1 4 1 1 1 1 1 4 1111114111114 2L 11s 4:1 liese[13]
1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 111111131111113 2L 13s 3:1 liese[15]
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 11111111211111112 2L 15s 2:1 liese[17]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generator pair of 11\19 and 8\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
11 8 1L 1s 11:8
3 8 8 388 2L 1s 8:3
3 3 5 3 5 33535 2L 3s 5:3 pentic meantone[5]
3 3 3 2 3 3 2 3332332 5L 2s 3:2 diatonic meantone[7]
1 2 1 2 1 2 2 1 2 1 2 2 121212212122 7L 5s 2:1 m-chromatic meantone[12]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generator pair of 12\19 and 7\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
12 7 1L 1s 12:7
5 7 7 577 2L 1s 7:5
5 5 2 5 2 55252 3L 2s 5:2 antipentic sensi[5]
3 2 3 2 2 3 2 2 32322322 3L 5s 3:2 sensoid sensi[8]
1 2 2 1 2 2 2 1 2 2 2 12212221222 8L 3s 2:1 sensi[11]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generator pair of 13\19 and 6\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
13 6 1L 1s 13:6
7 6 6 766 1L 2s 7:6
1 6 6 6 1666 3L 1s 6:1 tetric
1 1 5 1 5 1 5 1151515 3L 4s 5:1 mosh magic[7]
1 1 1 4 1 1 4 1 1 4 1114114114 3L 7s 4:1 sephiroid magic[10]
1 1 1 1 3 1 1 1 3 1 1 1 3 1111311131113 3L 10s 3:1 magic[13]
1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1111121111211112 3L 13s 2:1 magic[16]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generator pair of 14\19 and 5\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
14 5 1L 1s 14:5
9 5 5 955 1L 2s 9:5
4 5 5 5 4555 3L 1s 5:4 tetric
4 4 1 4 1 4 1 4414141 4L 3s 4:1 smitonic kleismic[7]
3 1 3 1 1 3 1 1 3 1 1 31311311311 4L 7s 3:1 kleistonic kleismic[11]
2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 211211121112111 4L 11s 2:1 kleismic[15]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generator pair of 15\19 and 4\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
15 4 1L 1s 15:4
11 4 4 1L 2s 11:4
7 4 4 4 7444 1L 3s 7:4
3 4 4 4 4 34444 4L 1s 4:3 manic godzilla[5]
3 3 1 3 1 3 1 3 1 331313131 5L 4s 3:1 semiquartal godzilla[9]
2 1 2 1 1 2 1 1 2 1 1 2 1 1 21211211211211 5L 9s 2:1 godzilla[14]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generator pair of 16\19 and 3\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
16 3 1L 1s 16:3
13 3 3 1L 2s 13:3
10 3 3 3 1L 3s 10:3
7 3 3 3 3 73333 1L 4s 7:3
4 3 3 3 3 3 433333 1L 5s 4:3 deutone[6]
1 3 3 3 3 3 3 1333333 6L 1s 3:1 archeotonic deutone[7]
1 1 2 1 2 1 2 1 2 1 2 1 2 1121212121212 6L 7s 2:1 deutone[13]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generator pair of 17\19 and 2\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
17 2 1L 1s 17:2
15 2 2 1L 2s 15:2
13 2 2 2 1L 3s 13:2
11 2 2 2 2 1L 4s 11:2
9 2 2 2 2 2 922222 1L 5s 9:2
7 2 2 2 2 2 2 7222222 1L 6s 7:2
5 2 2 2 2 2 2 2 52222222 1L 7s 5:2
3 2 2 2 2 2 2 2 2 322222222 1L 8s 3:2 negri[9]
1 2 2 2 2 2 2 2 2 2 1222222222 9L 1s 2:1 sinatonic negri[10]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generator pair of 18\19 and 1\19 Scale Code Mos Step Ratio TAMNAMS Name Scales
18 1 1L 1s 18:1
17 1 1 1L 2s 17:1
16 1 1 1 1L 3s 16:1
15 1 1 1 1 1L 4s 15:1
14 1 1 1 1 1 1L 5s 14:1
13 1 1 1 1 1 1 1L 6s 13:1
12 1 1 1 1 1 1 1 1L 7s 12:1
11 1 1 1 1 1 1 1 1 1L 8s 11:1
10 1 1 1 1 1 1 1 1 1 1L 9s 10:1
9 1 1 1 1 1 1 1 1 1 1 91111111111 1L 10s 9:1
8 1 1 1 1 1 1 1 1 1 1 1 811111111111 1L 11s 8:1
7 1 1 1 1 1 1 1 1 1 1 1 1 7111111111111 1L 12s 7:1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 61111111111111 1L 13s 6:1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 511111111111111 1L 14s 5:1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4111111111111111 1L 15s 4:1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 31111111111111111 1L 16s 3:1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 211111111111111111 1L 17s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Mode and Interval Table

Based on the scale table, there is also the idea of a mode table. Since the modes of a scale affect its scale degrees, this also serves as an interval table.

Notes:

  • The names of mosses and intervals are based on TAMNAMS naming conventions.
  • As this is an interval table, intervals are based on the root of the scale and whichever scale degree is k steps up from the root. For intervals that have two sizes (major and minor, augmented and perfect, or perfect and diminished), bold text denotes the larger of the two intervals. (This is far more striking with color coding.)
Mos Scale Code UDP Mode Name 0-step

(unison)

1-step 2-step 3-step 4-step 5-step 6-step 7-step

(octave)

Diatonic (5L 2s) LLLsLLs 6|0 Lydian Perfect Maj Maj Aug Perfect Maj Maj Perfect
LLsLLLs 5|1 Ionian Perfect Maj Maj Perfect Perfect Maj Maj Perfect
LLsLLsL 4|2 Mixolydian Perfect Maj Maj Perfect Perfect Maj min Perfect
LsLLLsL 3|3 Dorian Perfect Maj min Perfect Perfect Maj min Perfect
LsLLsLL 2|4 Aeolian Perfect Maj min Perfect Perfect min min Perfect
sLLLsLL 1|5 Phrygian Perfect min min Perfect Perfect min min Perfect
sLLsLLL 0|6 Locrian Perfect min min Perfect dim min min Perfect
Mos Scale Code UDP Mode Name 0-step

(unison)

1-step 2-step 3-step 4-step 5-step 6-step 7-step

(octave)

Mosh (3L 4s) LsLsLss 6|0 Dril Perfect Maj Perfect Maj Maj Aug Maj Perfect
LsLssLs 5|1 Gil Perfect Maj Perfect Maj Maj Perfect Maj Perfect
LssLsLs 4|2 Kleeth Perfect Maj Perfect min Maj Perfect Maj Perfect
sLsLsLs 3|3 Bish Perfect min Perfect min Maj Perfect Maj Perfect
sLsLssL 2|4 Fish Perfect min Perfect min Maj Perfect min Perfect
sLssLsL 1|5 Jwl Perfect min Perfect min min Perfect min Perfect
ssLsLsL 0|6 Led Perfect min dim min min Perfect min Perfect

Mos Family Tree as a Table

The following is the mos family tree, formatted as a table. The table consists of 6 generations, or up to 5th-order child mosses.

Mos Family Tree (single-period only)
Parent Scale 1st-order child mosses 2nd-order child mosses 3rd-order child mosses 4th-order child mosses 5th-order child mosses
1L 1s 1L 2s 1L 3s 1L 4s 1L 5s 1L 6s
6L 1s
5L 1s 5L 6s
6L 5s
4L 1s 4L 5s 4L 9s
9L 4s
5L 4s 5L 9s
9L 5s
3L 1s 3L 4s 3L 7s 3L 10s
10L 3s
7L 3s 7L 10s
10L 7s
4L 3s 4L 7s 4L 11s
11L 4s
7L 4s 7L 11s
11L 7s
2L 1s 2L 3s 2L 5s 2L 7s 2L 9s
9L 2s
7L 2s 7L 9s
9L 7s
5L 2s 5L 7s 5L 12s
12L 5s
7L 5s 7L 12s
12L 7s
3L 2s 3L 5s 3L 8s 3L 11s
11L 3s
8L 3s 8L 11s
11L 8s
5L 3s 5L 8s 5L 13s
13L 5s
8L 5s 8L 13s
13L 8

Alternate ways of organizing mosses named under TAMNAMS

Using the MOS family tree (with outdated names)

Mos Family Tree (single-period only), with TAMNAMS Names

italics denote 1L ns scales (named for completeness); asterisks denote non-official names (from my own notes)

Progenitor scale 1st-order child mosses 2nd-order child mosses 3rd-order child mosses 4th-order child mosses 5th-order child mosses
Steps Scale name Steps Scale name Steps Scale name Steps Scale name Steps Scale name Steps Scale name
1L 1s prototonic* 1L 2s

antideuteric*

1L 3s antitetric* 1L 4s antimanic 1L 5s antimachinoid 1L 6s anti-archeotonic
6L 1s archeotonic
5L 1s machinoid 5L 6s
6L 5s
4L 1s manic 4L 5s orwelloid 4L 9s
9L 4s
5L 4s semiquartal 5L 9s
9L 5s
3L 1s tetric* 3L 4s mosh 3L 7s sephiroid 3L 10s
10L 3s
7L 3s dicotonic 7L 10s
10L 7s
4L 3s smitonic 4L 7s kleistonic 4L 11s
11L 4s
7L 4s suprasmitonic 7L 11s
11L 7s
2L 1s deuteric* 2L 3s pentic 2L 5s antidiatonic 2L 7s joanatonic 2L 9s
9L 2s
7L 2s superdiatonic 7L 9s
9L 7s
5L 2s diatonic 5L 7s p-chromatic 5L 12s p-superchromatic*
12L 5s
7L 5s m-chromatic 7L 12s
12L 7s m-superchromatic*
3L 2s antipentic 3L 5s sensoid 3L 8s 3L 11s
11L 3s
8L 3s 8L 11s
11L 8s
5L 3s oneirotonic 5L 8s 5L 13s
13L 5s
8L 5s 8L 13s
13L 8

Family tree limited to 10 notes and with up to 5 periods

Family tree of single-period mosses, limited to 10-note scales
Root 1st-order child scales 2nd-order child scales 3rd-order child scales 4th-order child scales 5th-order child scales 6th-order child scales 7th-order child scales 8th-order child scales
Mos Name Mos Name Mos Name Mos Name Mos Name Mos Name Mos Name Mos Name Mos Name
1L 1s trivial 1L 2s antrial 1L 3s antetric 1L 4s pedal 1L 5s antimachinoid 1L 6s onyx 1L 7s antipine 1L 8s antisubneutralic 1L 9s antisinatonic
9L 1s sinatonic
8L 1s subneutralic
7L 1s pine
6L 1s archeotonic
5L 1s machinoid
4L 1s manual 5L 4s semiquartal
4L 5s gramitonic
3L 1s tetric 4L 3s smitonic
3L 4s mosh 7L 3s dicoid
3L 7s sephiroid
2L 1s trial 3L 2s antipentic 3L 5s checkertonic
5L 3s oneirotonic
2L 3s pentic 5L 2s diatonic
2L 5s antidiatonic 7L 2s superdiatonic
2L 7s balzano
Family tree of 2-period mosses, limited to 10-note scales
Root 1st-order child scales 2nd-order child scales 3rd-order child scales
Mos Name Mos Name Mos Name Mos Name
2L 2s biwood 2L 4s malic 2L 6s subaric 2L 8s jaric
8L 2s taric
6L 2s ekic
4L 2s citric 6L 4s lemon
4L 6s lime
Family tree of 3-period mosses, limited to 10-note scales
Root 1st-order child scales
Mos Name Mos Name
3L 3s triwood 3L 6s tcherepnin
6L 3s hyrulic
Family tree of 4-period mosses, limited to 10-note scales
Root
Mos Name
4L 4s tetrawood, diminished
Family tree of 5-period mosses, limited to 10-note scales
Root
Mos Name
5L 5s pentawood

Mos Family Tree for an Edo

The basis of this diagram is simple: take the infinite mos family tree and only show the scales that are available for a specific edo.

19edo Example

The table shown below is the mos family tree for 19edo.

Mos Family Tree for 19edo
Generator Pair 18\19 - 1\19 17\19 - 2\19 16\19 - 3\19 15\19 - 4\19 14\19 - 5\19 13\19 - 6\19 12\19 - 7\19 11\19 - 8\19 10\19 - 9\19
Gen. 1 1L 1s
Gen. 2 1L 2s 2L 1s
Gen. 3 1L 3s 3L 1s 3L 2s 2L 3s
Gen. 4 1L 4s 4L 1s 4L 3s 3L 4s 3L 5s 5L 2s 2L 5s
Gen. 5 1L 5s 5L 4s 4L 7s 3L 7s 8L 3s 7L 5s 2L 7s
Gen. 6 1L 6s 6L 1s 5L 9s 4L 11s 3L 10s 2L 9s
Gen. 7 1L 7s 6L 7s 3L 13s 2L 11s
Gen. 8 1L 8s 2L 13s
Gen. 9 1L 9s 2L 15s
Gen. 10 1L 10s
Gen. 11 1L 11s
Gen. 12 1L 12s
Gen. 13 1L 13s
Gen. 14 1L 14s
Gen. 15 1L 15s
Gen. 16 1L 16s
Gen. 17 1L 17s

This tree can be thought of as a pruned mos family tree, where every leaf node corresponds to a mos available to 19edo with a step ratio of 2:1. To conceptualize this tree better, consider the leaf node 7L 5s. Since the entire structure is a binary tree (that is, there are no loopy paths), there is one and only one unique path that starts from 1L 1s and ends at 7L 5s. Likewise, all other leaf nodes have a unique path that, when traversed backwards, merges back with 1L 1s.

Note that all of these paths inevitably overlap. It's important to note that these overlaps are due to each path having multiple mosses in common with one another; for a node with two child nodes, the two child scales don't share the same generator pair, only a common mos from the parent node. Pruning a mos tree by generator pair isolates a single linear path between 1L 1s and the leaf node with the step ratio of 2:1; put another way, the tree would be pruned down to a single, finite branch.

Note the curious case of 1L 7s in this example. It should be the leaf node for the generator pair 17\19 and 2\19, but since that scale is also available to the generator pair of 18\19 and 1\19, it's not and that branch continues to 1L 17s. Technically speaking, the branches for the generator pairs of 18\19-1\19 and 17\19-2\19 coincide.

31edo Example

This table does away with generation numbers and includes the "terminating edo" (the edo resulted when the mos xL ys with a step ratio of L:s = 2:1 produces a pair of indistinguishable child scales xL (x+y)s and (x+y)L xs whose step ratios are both 1:1, or k:k if L and s share a common factor k). Also, no merged cells; hopefully, that illustrates things a bit better.

Mos Family Tree for 31edo
30\31 - 1\31 29\31 - 2\31 28\31 - 3\31 27\31 - 4\31 26\31 - 5\31 25\31 - 6\31 24\31 - 7\31 23\31 - 8\31 22\31 - 9\31 21\31 - 10\31 20\31 - 11\31 19\31 - 12\31 18\31 - 13\31 17\31 - 14\31 16\31 - 15\31
1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s 1L 1s
1L 2s 1L 2s 1L 2s 1L 2s 1L 2s 1L 2s 1L 2s 1L 2s 1L 2s 1L 2s 2L 1s 2L 1s 2L 1s 2L 1s 2L 1s
1L 3s 1L 3s 1L 3s 1L 3s 1L 3s 1L 3s 1L 3s 3L 1s 3L 1s 3L 1s 3L 2s 3L 2s 2L 3s 2L 3s 2L 3s
1L 4s 1L 4s 1L 4s 1L 4s 1L 4s 1L 4s 4L 1s 4L 3s 3L 4s 3L 4s 3L 5s 5L 3s 5L 2s 2L 5s 2L 5s
1L 5s 1L 5s 1L 5s 1L 5s 1L 5s 5L 1s 4L 5s 4L 7s 7L 3s 3L 7s 3L 8s 5L 8s 7L 5s 2L 7s 2L 7s
1L 6s 1L 6s 1L 6s 1L 6s 6L 1s 5L 6s 9L 4s 4L 11s 7L 10s 3L 10s 3L 11s 13L 5s 12L 7s 9L 2s 2L 9s
1L 7s 1L 7s 1L 7s 7L 1s 6L 7s 5L 11s 9L 13s 4L 15s 7L 17s 3L 13s 14L 3s 31edo 31edo 11L 9s 2L 11s
1L 8s 1L 8s 1L 8s 8L 7s 6L 13s 5L 16s 31edo 4L 19s 31edo 3L 16s 31edo 31edo 2L 13s
1L 9s 1L 9s 1L 9s 8L 15s 6L 19s 5L 21s 4L 23s 3L 19s 2L 15s
1L 10s 1L 10s 10L 1s 31edo 31edo 31edo 31edo 3L 22s 2L 17s
1L 11s 1L 11s 10L 11s 3L 25s 2L 19s
1L 12s 1L 12s 31edo 31edo 2L 21s
1L 13s 1L 13s 2L 23s
1L 14s 1L 14s 2L 25s
1L 15s 15L 1s 2L 27s
1L 16s 31edo 31edo
1L 17s
1L 18s
1L 19s
1L 20s
1L 21s
1L 22s
1L 23s
1L 24s
1L 25s
1L 26s
1L 27s
1L 28s
1L 29s
31edo