User:Ganaram inukshuk/Tables
This page is for xen-related tables that I've made but don't have an exact place elsewhere on the wiki (yet).
Scale Table
I've had the idea of using a rectangular horogram to represent how mosses of a specific generator pair are related to one another, only to learn that I can copy-paste the entire tables from Excel into the wiki editor. I doubt I'd be the first person to do this, but this would be a nice way to list the mosses of an edo. The idea to include scale and step ratio information occurred mid-editing.
Deployed examples can be found under 17edo mos scales and 31edo mos scales.
Mos Family Tree (single-period only), with TAMNAMS Names
italics denote 1L ns scales (named for completeness); asterisks denote non-official names (from my own notes) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Progenitor scale | 1st-order child mosses | 2nd-order child mosses | 3rd-order child mosses | 4th-order child mosses | 5th-order child mosses | ||||||
Steps | Scale name | Steps | Scale name | Steps | Scale name | Steps | Scale name | Steps | Scale name | Steps | Scale name |
1L 1s | prototonic* | 1L 2s |
|
1L 3s | antitetric* | 1L 4s | antimanic | 1L 5s | antimachinoid | 1L 6s | anti-archeotonic |
6L 1s | archeotonic | ||||||||||
5L 1s | machinoid | 5L 6s | |||||||||
6L 5s | |||||||||||
4L 1s | manic | 4L 5s | orwelloid | 4L 9s | |||||||
9L 4s | |||||||||||
5L 4s | semiquartal | 5L 9s | |||||||||
9L 5s | |||||||||||
3L 1s | tetric* | 3L 4s | mosh | 3L 7s | sephiroid | 3L 10s | |||||
10L 3s | |||||||||||
7L 3s | dicotonic | 7L 10s | |||||||||
10L 7s | |||||||||||
4L 3s | smitonic | 4L 7s | kleistonic | 4L 11s | |||||||
11L 4s | |||||||||||
7L 4s | suprasmitonic | 7L 11s | |||||||||
11L 7s | |||||||||||
2L 1s | deuteric* | 2L 3s | pentic | 2L 5s | antidiatonic | 2L 7s | joanatonic | 2L 9s | |||
9L 2s | |||||||||||
7L 2s | superdiatonic | 7L 9s | |||||||||
9L 7s | |||||||||||
5L 2s | diatonic | 5L 7s | p-chromatic | 5L 12s | p-superchromatic* | ||||||
12L 5s | |||||||||||
7L 5s | m-chromatic | 7L 12s | |||||||||
12L 7s | m-superchromatic* | ||||||||||
3L 2s | antipentic | 3L 5s | sensoid | 3L 8s | 3L 11s | ||||||
11L 3s | |||||||||||
8L 3s | 8L 11s | ||||||||||
11L 8s | |||||||||||
5L 3s | oneirotonic | 5L 8s | 5L 13s | ||||||||
13L 5s | |||||||||||
8L 5s | 8L 13s | ||||||||||
13L 8 |
Family tree limited to 10 notes and with up to 5 periods
Mosses whose children exceed 10 notes are shown in bold. (Stars indicate mosses whose descendants now bear at least a mos intro and infobox mos template. Double stars indicate mosses whose descendants already had those templates. Triple stars indicate that the mos's descendants lack a page.)
Family tree of single-period mosses, limited to 10-note scales | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Root | 1st-order child scales | 2nd-order child scales | 3rd-order child scales | 4th-order child scales | 5th-order child scales | 6th-order child scales | 7th-order child scales | 8th-order child scales | |||||||||
Mos | Name | Mos | Name | Mos | Name | Mos | Name | Mos | Name | Mos | Name | Mos | Name | Mos | Name | Mos | Name |
1L 1s | trivial | 1L 2s | antrial | 1L 3s | antetric | 1L 4s | pedal | 1L 5s | antimachinoid | 1L 6s | onyx | 1L 7s | antipine | 1L 8s | antisubneutralic | 1L 9s | antisinatonic * |
9L 1s | sinatonic * | ||||||||||||||||
8L 1s | subneutralic ** | ||||||||||||||||
7L 1s | pine * | ||||||||||||||||
6L 1s | archaeotonic ** | ||||||||||||||||
5L 1s | machinoid * | ||||||||||||||||
4L 1s | manual | 5L 4s | semiquartal * | ||||||||||||||
4L 5s | gramitonic * | ||||||||||||||||
3L 1s | tetric | 4L 3s | smitonic * | ||||||||||||||
3L 4s | mosh | 7L 3s | dicoid * | ||||||||||||||
3L 7s | sephiroid * | ||||||||||||||||
2L 1s | trial | 3L 2s | antipentic | 3L 5s | checkertonic * | ||||||||||||
5L 3s | oneirotonic ** | ||||||||||||||||
2L 3s | pentic | 5L 2s | diatonic * | ||||||||||||||
2L 5s | antidiatonic | 7L 2s | armotonic ** | ||||||||||||||
2L 7s | balzano * | ||||||||||||||||
Family tree of 2-period mosses, limited to 10-note scales | |||||||||||||||||
Root | 1st-order child scales | 2nd-order child scales | 3rd-order child scales | ||||||||||||||
Mos | Name | Mos | Name | Mos | Name | Mos | Name | ||||||||||
2L 2s | biwood | 2L 4s | malic | 2L 6s | subaric | 2L 8s | jaric * | ||||||||||
8L 2s | taric *** | ||||||||||||||||
6L 2s | ekic ** | ||||||||||||||||
4L 2s | citric | 6L 4s | lemon * | ||||||||||||||
4L 6s | lime * | ||||||||||||||||
Family tree of 3-period mosses, limited to 10-note scales | |||||||||||||||||
Root | 1st-order child scales | ||||||||||||||||
Mos | Name | Mos | Name | ||||||||||||||
3L 3s | triwood | 3L 6s | tcherepnin * | ||||||||||||||
6L 3s | hyrulic * | ||||||||||||||||
Family tree of 4-period mosses, limited to 10-note scales | |||||||||||||||||
Root | |||||||||||||||||
Mos | Name | ||||||||||||||||
4L 4s | tetrawood ** | ||||||||||||||||
Family tree of 5-period mosses, limited to 10-note scales | |||||||||||||||||
Root | |||||||||||||||||
Mos | Name | ||||||||||||||||
5L 5s | pentawood * |
Mos Family Tree for an Edo
The basis of this diagram is simple: take the infinite mos family tree and only show the scales that are available for a specific edo.
19edo Example
The table shown below is the mos family tree for 19edo.
Mos Family Tree for 19edo | |||||||||
---|---|---|---|---|---|---|---|---|---|
Generator Pair | 18\19 - 1\19 | 17\19 - 2\19 | 16\19 - 3\19 | 15\19 - 4\19 | 14\19 - 5\19 | 13\19 - 6\19 | 12\19 - 7\19 | 11\19 - 8\19 | 10\19 - 9\19 |
Gen. 1 | 1L 1s | ||||||||
Gen. 2 | 1L 2s | 2L 1s | |||||||
Gen. 3 | 1L 3s | 3L 1s | 3L 2s | 2L 3s | |||||
Gen. 4 | 1L 4s | 4L 1s | 4L 3s | 3L 4s | 3L 5s | 5L 2s | 2L 5s | ||
Gen. 5 | 1L 5s | 5L 4s | 4L 7s | 3L 7s | 8L 3s | 7L 5s | 2L 7s | ||
Gen. 6 | 1L 6s | 6L 1s | 5L 9s | 4L 11s | 3L 10s | 2L 9s | |||
Gen. 7 | 1L 7s | 6L 7s | 3L 13s | 2L 11s | |||||
Gen. 8 | 1L 8s | 2L 13s | |||||||
Gen. 9 | 1L 9s | 2L 15s | |||||||
Gen. 10 | 1L 10s | ||||||||
Gen. 11 | 1L 11s | ||||||||
Gen. 12 | 1L 12s | ||||||||
Gen. 13 | 1L 13s | ||||||||
Gen. 14 | 1L 14s | ||||||||
Gen. 15 | 1L 15s | ||||||||
Gen. 16 | 1L 16s | ||||||||
Gen. 17 | 1L 17s |
This tree can be thought of as a pruned mos family tree, where every leaf node corresponds to a mos available to 19edo with a step ratio of 2:1. To conceptualize this tree better, consider the leaf node 7L 5s. Since the entire structure is a binary tree (that is, there are no loopy paths), there is one and only one unique path that starts from 1L 1s and ends at 7L 5s. Likewise, all other leaf nodes have a unique path that, when traversed backwards, merges back with 1L 1s.
Note that all of these paths inevitably overlap. It's important to note that these overlaps are due to each path having multiple mosses in common with one another; for a node with two child nodes, the two child scales don't share the same generator pair, only a common mos from the parent node. Pruning a mos tree by generator pair isolates a single linear path between 1L 1s and the leaf node with the step ratio of 2:1; put another way, the tree would be pruned down to a single, finite branch.
Note the curious case of 1L 7s in this example. It should be the leaf node for the generator pair 17\19 and 2\19, but since that scale is also available to the generator pair of 18\19 and 1\19, it's not and that branch continues to 1L 17s. Technically speaking, the branches for the generator pairs of 18\19-1\19 and 17\19-2\19 coincide.
Mos-edo table
This table shows what edos are possible for a given mos; in other words, given a mos xL ys (where x and y are fixed), L and s can vary to produce different edos (where L > s). The example below is for 12edo. Degenerate cases lie along the edges of the triangle, with the diagonal (in bold) are for edos where L:s = 1:1.
Edos of 5L 2s | Small step size (s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Large step size (L) | 0 | 0 | ||||||||||
1 | 5 | 7 | ||||||||||
2 | 10 | 12 | 14 | |||||||||
3 | 15 | 17 | 19 | 21 | ||||||||
4 | 20 | 22 | 24 | 26 | 28 | |||||||
5 | 25 | 27 | 29 | 31 | 33 | 35 | ||||||
6 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | |||||
7 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | ||||
8 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | |||
9 | 45 | 47 | 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 | ||
10 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 |
An alternate table shows mosses where L:s = 2:1 is on the diagonal, dividing the table into a soft half and a hard half. Here, two additional diagonals are shown in bold, one each for L:s = 3:1 and L:s = 3:2. Rows represent chroma size rather than large step size.
Edos of 5L 2s | Small step size (s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Chroma size
|L-s| |
0 | 0 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
1 | 5 | 12 | 19 | 26 | 33 | 40 | 47 | 54 | 61 | 68 | 75 | |
2 | 10 | 17 | 24 | 31 | 38 | 45 | 52 | 59 | 66 | 73 | 80 | |
3 | 15 | 22 | 29 | 36 | 43 | 50 | 57 | 64 | 71 | 78 | 85 | |
4 | 20 | 27 | 34 | 41 | 48 | 55 | 62 | 69 | 76 | 83 | 90 | |
5 | 25 | 32 | 39 | 46 | 53 | 60 | 67 | 74 | 81 | 88 | 95 | |
6 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 79 | 86 | 93 | 100 | |
7 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 | 91 | 98 | 105 | |
8 | 40 | 47 | 54 | 61 | 68 | 75 | 82 | 89 | 96 | 103 | 110 | |
9 | 45 | 52 | 59 | 66 | 73 | 80 | 87 | 94 | 101 | 108 | 115 | |
10 | 50 | 57 | 64 | 71 | 78 | 85 | 92 | 99 | 106 | 113 | 120 |