9L 18s
↖ 8L 17s | ↑ 9L 17s | 10L 17s ↗ |
← 8L 18s | 9L 18s | 10L 18s → |
↙ 8L 19s | ↓ 9L 19s | 10L 19s ↘ |
┌╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬┐ │║││║││║││║││║││║││║││║││║│││ │││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
ssLssLssLssLssLssLssLssLssL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
9L 18s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 9 large steps and 18 small steps, with a period of 1 large step and 2 small steps that repeats every 133.3 ¢, or 9 times every octave. 9L 18s is a child scale of 9L 9s, expanding it by 9 tones. Generators that produce this scale range from 88.9 ¢ to 133.3 ¢, or from 0 ¢ to 44.4 ¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
18|0(9) | 1 | LssLssLssLssLssLssLssLssLss |
9|9(9) | 3 | sLssLssLssLssLssLssLssLssLs |
0|18(9) | 2 | ssLssLssLssLssLssLssLssLssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Perfect 1-mosstep | P1ms | s | 0.0 ¢ to 44.4 ¢ |
Augmented 1-mosstep | A1ms | L | 44.4 ¢ to 133.3 ¢ | |
2-mosstep | Diminished 2-mosstep | d2ms | 2s | 0.0 ¢ to 88.9 ¢ |
Perfect 2-mosstep | P2ms | L + s | 88.9 ¢ to 133.3 ¢ | |
3-mosstep | Perfect 3-mosstep | P3ms | L + 2s | 133.3 ¢ |
4-mosstep | Perfect 4-mosstep | P4ms | L + 3s | 133.3 ¢ to 177.8 ¢ |
Augmented 4-mosstep | A4ms | 2L + 2s | 177.8 ¢ to 266.7 ¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | L + 4s | 133.3 ¢ to 222.2 ¢ |
Perfect 5-mosstep | P5ms | 2L + 3s | 222.2 ¢ to 266.7 ¢ | |
6-mosstep | Perfect 6-mosstep | P6ms | 2L + 4s | 266.7 ¢ |
7-mosstep | Perfect 7-mosstep | P7ms | 2L + 5s | 266.7 ¢ to 311.1 ¢ |
Augmented 7-mosstep | A7ms | 3L + 4s | 311.1 ¢ to 400.0 ¢ | |
8-mosstep | Diminished 8-mosstep | d8ms | 2L + 6s | 266.7 ¢ to 355.6 ¢ |
Perfect 8-mosstep | P8ms | 3L + 5s | 355.6 ¢ to 400.0 ¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 3L + 6s | 400.0 ¢ |
10-mosstep | Perfect 10-mosstep | P10ms | 3L + 7s | 400.0 ¢ to 444.4 ¢ |
Augmented 10-mosstep | A10ms | 4L + 6s | 444.4 ¢ to 533.3 ¢ | |
11-mosstep | Diminished 11-mosstep | d11ms | 3L + 8s | 400.0 ¢ to 488.9 ¢ |
Perfect 11-mosstep | P11ms | 4L + 7s | 488.9 ¢ to 533.3 ¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 4L + 8s | 533.3 ¢ |
13-mosstep | Perfect 13-mosstep | P13ms | 4L + 9s | 533.3 ¢ to 577.8 ¢ |
Augmented 13-mosstep | A13ms | 5L + 8s | 577.8 ¢ to 666.7 ¢ | |
14-mosstep | Diminished 14-mosstep | d14ms | 4L + 10s | 533.3 ¢ to 622.2 ¢ |
Perfect 14-mosstep | P14ms | 5L + 9s | 622.2 ¢ to 666.7 ¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 5L + 10s | 666.7 ¢ |
16-mosstep | Perfect 16-mosstep | P16ms | 5L + 11s | 666.7 ¢ to 711.1 ¢ |
Augmented 16-mosstep | A16ms | 6L + 10s | 711.1 ¢ to 800.0 ¢ | |
17-mosstep | Diminished 17-mosstep | d17ms | 5L + 12s | 666.7 ¢ to 755.6 ¢ |
Perfect 17-mosstep | P17ms | 6L + 11s | 755.6 ¢ to 800.0 ¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 6L + 12s | 800.0 ¢ |
19-mosstep | Perfect 19-mosstep | P19ms | 6L + 13s | 800.0 ¢ to 844.4 ¢ |
Augmented 19-mosstep | A19ms | 7L + 12s | 844.4 ¢ to 933.3 ¢ | |
20-mosstep | Diminished 20-mosstep | d20ms | 6L + 14s | 800.0 ¢ to 888.9 ¢ |
Perfect 20-mosstep | P20ms | 7L + 13s | 888.9 ¢ to 933.3 ¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 7L + 14s | 933.3 ¢ |
22-mosstep | Perfect 22-mosstep | P22ms | 7L + 15s | 933.3 ¢ to 977.8 ¢ |
Augmented 22-mosstep | A22ms | 8L + 14s | 977.8 ¢ to 1066.7 ¢ | |
23-mosstep | Diminished 23-mosstep | d23ms | 7L + 16s | 933.3 ¢ to 1022.2 ¢ |
Perfect 23-mosstep | P23ms | 8L + 15s | 1022.2 ¢ to 1066.7 ¢ | |
24-mosstep | Perfect 24-mosstep | P24ms | 8L + 16s | 1066.7 ¢ |
25-mosstep | Perfect 25-mosstep | P25ms | 8L + 17s | 1066.7 ¢ to 1111.1 ¢ |
Augmented 25-mosstep | A25ms | 9L + 16s | 1111.1 ¢ to 1200.0 ¢ | |
26-mosstep | Diminished 26-mosstep | d26ms | 8L + 18s | 1066.7 ¢ to 1155.6 ¢ |
Perfect 26-mosstep | P26ms | 9L + 17s | 1155.6 ¢ to 1200.0 ¢ | |
27-mosstep | Perfect 27-mosstep | P27ms | 9L + 18s | 1200.0 ¢ |
Scale tree
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |