275edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET}} {{EDO intro|275}} == Theory == If harmonic 5 is used, 275et tends very sharp. It tempers out {{monzo| 24 -21 4 }} (vulture comma) and {{monzo| 19 10 -15 }}..." |
+RTT table and rank-2 temperaments |
||
Line 5: | Line 5: | ||
If harmonic 5 is used, 275et tends very sharp. It tempers out {{monzo| 24 -21 4 }} ([[vulture comma]]) and {{monzo| 19 10 -15 }} ([[trisedodge comma]]) in the 5-limit; [[6144/6125]] and [[10976/10935]] in the 7-limit. | If harmonic 5 is used, 275et tends very sharp. It tempers out {{monzo| 24 -21 4 }} ([[vulture comma]]) and {{monzo| 19 10 -15 }} ([[trisedodge comma]]) in the 5-limit; [[6144/6125]] and [[10976/10935]] in the 7-limit. | ||
The 275e val {{val| 275 436 639 772 '''952''' }} being the best, tempers out [[441/440]], [[4000/3993]], [[14700/14641]], and [[19712/19683]]. This can be extended to the 13-limit through [[364/363]], [[676/675]], [[1001/1000]], and [[2080/2079]]. | The 275e val {{val| 275 436 639 772 '''952''' }} being the best, tempers out [[441/440]], [[4000/3993]], [[14700/14641]], and [[19712/19683]]. This can be extended to the 13-limit through [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]] and [[2080/2079]]. | ||
The 275 val {{val| 275 436 639 772 '''951''' }} tempers out [[3025/3024]], [[3773/3750]], [[8019/8000]]. This can be extended to the 13-limit through [[352/351]], 676/675, [[1716/1715]], [[2200/2197]], and [[3584/3575]]. | The 275 val {{val| 275 436 639 772 '''951''' }} tempers out [[3025/3024]], [[3773/3750]], [[8019/8000]]. This can be extended to the 13-limit through [[352/351]], 676/675, [[1716/1715]], [[2200/2197]], and [[3584/3575]]. | ||
Line 11: | Line 11: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|275|intervals=prime|columns=11}} | {{Harmonics in equal|275|intervals=prime|columns=11}} | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve Stretch (¢) | |||
! colspan="2" | Tuning Error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 436 -275 }} | |||
| [{{val| 275 436 }}] | |||
| -0.1863 | |||
| 0.1862 | |||
| 4.27 | |||
|- | |||
| 2.3.5 | |||
| {{monzo| 24 -21 4 }}, {{monzo| 19 10 -15 }} | |||
| [{{val| 275 436 639 }}] | |||
| -0.4184 | |||
| 0.3618 | |||
| 8.29 | |||
|- | |||
| 2.3.5.7 | |||
| 6144/6125, 10976/10935, 9882516/9765625 | |||
| [{{val| 275 436 639 772 }}] | |||
| -0.3051 | |||
| 0.3698 | |||
| 8.48 | |||
|- | |||
| 2.3.5.7.11 | |||
| 441/440, 4000/3993, 6144/6125, 10976/10935 | |||
| [{{val| 275 436 639 772 952 }}] (275e) | |||
| -0.4096 | |||
| 0.3912 | |||
| 8.97 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 364/363, 441/440, 676/675, 6144/6125, 10976/10935 | |||
| [{{val| 275 436 639 772 952 1018 }}] (275e) | |||
| -0.4158 | |||
| 0.3574 | |||
| 8.19 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per 8ve | |||
! Generator<br>(Reduced) | |||
! Cents<br>(Reduced) | |||
! Associated<br>Ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 6\275 | |||
| 26.18 | |||
| 1594323/1562500 | |||
| [[Sfourth]] (5-limit) | |||
|- | |||
| 1 | |||
| 109\275 | |||
| 485.64 | |||
| 320/243 | |||
| [[Vulture]] (5-limit) | |||
|- | |||
| 1 | |||
| 128\275 | |||
| 558.55 | |||
| 112/81 | |||
| [[Condor]] (275e) | |||
|- | |||
| 5 | |||
| 17\275 | |||
| 74.18 | |||
| 25/24 | |||
| [[Countdown]] (275e) | |||
|- | |||
| 11 | |||
| 114\275<br>(11\275) | |||
| 497.45<br>(48.00) | |||
| 4/3<br>(36/35) | |||
| [[Hendecatonic]] | |||
|} | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] |
Revision as of 18:25, 4 November 2022
← 274edo | 275edo | 276edo → |
Theory
If harmonic 5 is used, 275et tends very sharp. It tempers out [24 -21 4⟩ (vulture comma) and [19 10 -15⟩ (trisedodge comma) in the 5-limit; 6144/6125 and 10976/10935 in the 7-limit.
The 275e val ⟨275 436 639 772 952] being the best, tempers out 441/440, 4000/3993, 14700/14641, and 19712/19683. This can be extended to the 13-limit through 364/363, 676/675, 1001/1000, 1575/1573 and 2080/2079.
The 275 val ⟨275 436 639 772 951] tempers out 3025/3024, 3773/3750, 8019/8000. This can be extended to the 13-limit through 352/351, 676/675, 1716/1715, 2200/2197, and 3584/3575.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.59 | +2.05 | -0.10 | -1.50 | +1.65 | -0.23 | -0.79 | +0.09 | +0.24 | -1.76 |
Relative (%) | +0.0 | +13.5 | +47.0 | -2.3 | -34.4 | +37.9 | -5.2 | -18.0 | +2.0 | +5.5 | -40.4 | |
Steps (reduced) |
275 (0) |
436 (161) |
639 (89) |
772 (222) |
951 (126) |
1018 (193) |
1124 (24) |
1168 (68) |
1244 (144) |
1336 (236) |
1362 (262) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [436 -275⟩ | [⟨275 436]] | -0.1863 | 0.1862 | 4.27 |
2.3.5 | [24 -21 4⟩, [19 10 -15⟩ | [⟨275 436 639]] | -0.4184 | 0.3618 | 8.29 |
2.3.5.7 | 6144/6125, 10976/10935, 9882516/9765625 | [⟨275 436 639 772]] | -0.3051 | 0.3698 | 8.48 |
2.3.5.7.11 | 441/440, 4000/3993, 6144/6125, 10976/10935 | [⟨275 436 639 772 952]] (275e) | -0.4096 | 0.3912 | 8.97 |
2.3.5.7.11.13 | 364/363, 441/440, 676/675, 6144/6125, 10976/10935 | [⟨275 436 639 772 952 1018]] (275e) | -0.4158 | 0.3574 | 8.19 |
Rank-2 temperaments
Periods per 8ve |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 6\275 | 26.18 | 1594323/1562500 | Sfourth (5-limit) |
1 | 109\275 | 485.64 | 320/243 | Vulture (5-limit) |
1 | 128\275 | 558.55 | 112/81 | Condor (275e) |
5 | 17\275 | 74.18 | 25/24 | Countdown (275e) |
11 | 114\275 (11\275) |
497.45 (48.00) |
4/3 (36/35) |
Hendecatonic |