22L 1s: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
comments |
||
Line 7: | Line 7: | ||
| Pattern = LLL...22x...LLLs | | Pattern = LLL...22x...LLLs | ||
}} | }} | ||
22L 1s is the scale that is most commonly produced by stacking the interval of [[33/32]]. If it had a name, it would most probably be quartismoid, since its harmonic entropy minimum corresponds to tempering out the [[quartisma]] - five 33/32s being equated with 7/6. | 22L 1s is the scale that is most commonly produced by stacking the interval of [[33/32]]. If it had a name, it would most probably be '''quartismoid''', since its harmonic entropy minimum corresponds to tempering out the [[quartisma]] - five 33/32s being equated with 7/6. | ||
From 1\22 to 4\91, 13 steps amount to a diatonic fifth. Between 4\91 and 1\23, 13 steps amount to a pelog / mavila fifth. | |||
== Scale tree == | == Scale tree == | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
! colspan="6" rowspan="2" |Generator | ! colspan="6" rowspan="2" |Generator | ||
! rowspan="2" |L | ! rowspan="2" |L | ||
! rowspan="2" |s | ! rowspan="2" |s | ||
! rowspan="2" |L/s | ! rowspan="2" |L/s | ||
!Comments | |||
|- | |- | ||
|- | |- | ||
|1\23 | |1\23|| || || || || ||1||1||1.000 | ||
| | |||
|- | |- | ||
| || || || || ||6\137 | | || || || || ||6\137||6||5||1.200 | ||
| | |||
|- | |- | ||
| || || || ||5\114 | | || || || ||5\114|| ||5||4||1.250 | ||
| | |||
|- | |- | ||
| || || || || ||9\205 | | || || || || ||9\205||9||7||1.286 | ||
| | |||
|- | |- | ||
| || || ||4\91 | | || || ||4\91|| || ||4||3||1.333 | ||
|13 steps adding to lower bound of diatonic fifths (684.17c) is here | |||
|- | |- | ||
| || || || || ||11\250 | | || || || || ||11\250||11||8||1.375 | ||
| | |||
|- | |- | ||
| || || || ||7\159 | | || || || ||7\159|| ||7||5||1.400 | ||
| | |||
|- | |- | ||
| || || || || ||10\227 | | || || || || ||10\227||10||7||1.428 | ||
| | |||
|- | |- | ||
| || ||3\68 | | || ||3\68|| || || ||3||2||1.500 | ||
|[[23edo and octave stretching|Stretched 23edo]] is in this range | |||
|- | |- | ||
| || || || || ||11\249 | | || || || || ||11\249||11||7||1.571 | ||
| | |||
|- | |- | ||
| || || || ||8\181 | | || || || ||8\181|| ||8||5||1.600 | ||
| | |||
|- | |- | ||
| || || || || ||13\294 | | || || || || ||13\294||13||8||1.625 | ||
| | |||
|- | |- | ||
| || || ||5\113 | | || || ||5\113|| || ||5||3||1.667 | ||
| | |||
|- | |- | ||
| || || || || ||12\271 | | || || || || ||12\271||12||7||1.714 | ||
| | |||
|- | |- | ||
| || || || ||7\158 | | || || || ||7\158|| ||7||4||1.750 | ||
| | |||
|- | |- | ||
| || || || || ||9\203 | | || || || || ||9\203||9||5||1.800 | ||
| | |||
|- | |- | ||
| ||2\45 | | ||2\45|| || || || ||2||1||2.000 | ||
|Basic quartismoid | |||
|- | |- | ||
| || || || || ||9\202 | | || || || || ||9\202||9||4||2.250 | ||
| | |||
|- | |- | ||
| || || || ||7\157 | | || || || ||7\157|| ||7||3||2.333 | ||
| | |||
|- | |- | ||
| || || || || ||12\269 | | || || || || ||12\269||12||5||2.400 | ||
| | |||
|- | |- | ||
| || || ||5\112 | | || || ||5\112|| || ||5||2||2.500 | ||
|13 steps adding to 1/4 comma meantone fifth | |||
is around here | |||
|- | |- | ||
| || || || || ||13\291 | | || || || || ||13\291||13||5||2.600 | ||
| | |||
|- | |- | ||
| || || || ||8\179 | | || || || ||8\179|| ||8||3||2.667 | ||
| | |||
|- | |- | ||
| || || || || ||11\246 | | || || || || ||11\246||11||4||2.750 | ||
| | |||
|- | |- | ||
| || ||3\67 | | || ||3\67|| || || ||3||1||3.000 | ||
| | |||
|- | |- | ||
| || || || || ||10\223 | | || || || || ||10\223||10||3||3.333 | ||
| | |||
|- | |- | ||
| || || || ||7\156 | | || || || ||7\156|| ||7||2||3.500 | ||
| | |||
|- | |- | ||
| || || || || ||11\245 | | || || || || ||11\245||11||3||3.667 | ||
| | |||
|- | |- | ||
| || || ||4\89 | | || || ||4\89|| || ||4||1||4.000 | ||
| | |||
|- | |- | ||
| || || || || ||9\200 | | || || || || ||9\200||9||2||4.500 | ||
|13 steps adding to 3/2 perfect fifth is around here | |||
|- | |- | ||
| || || || ||5\111 | | || || || ||5\111|| ||5||1||5.000 | ||
| | |||
|- | |- | ||
| || || || || ||6\133 | | || || || || ||6\133||6||1||6.000 | ||
| | |||
|- | |- | ||
|1\22 | |1\22|| || || || || ||1||0||→ inf | ||
| | |||
|} | |} | ||
==See also== | ==See also== | ||
* [[33/32]] | * [[33/32]] | ||
* [[33/32 equal step tuning]] | * [[33/32 equal step tuning]] |
Revision as of 14:55, 25 September 2022
← 21L 1s | 22L 1s | 23L 1s → |
↙ 21L 2s | ↓ 22L 2s | 23L 2s ↘ |
┌╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║║║║║║║║║║║║║║││ │││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLLLLLLLLLLLLLLLLLLLLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
22L 1s is the scale that is most commonly produced by stacking the interval of 33/32. If it had a name, it would most probably be quartismoid, since its harmonic entropy minimum corresponds to tempering out the quartisma - five 33/32s being equated with 7/6.
From 1\22 to 4\91, 13 steps amount to a diatonic fifth. Between 4\91 and 1\23, 13 steps amount to a pelog / mavila fifth.
Scale tree
Generator | L | s | L/s | Comments | |||||
---|---|---|---|---|---|---|---|---|---|
1\23 | 1 | 1 | 1.000 | ||||||
6\137 | 6 | 5 | 1.200 | ||||||
5\114 | 5 | 4 | 1.250 | ||||||
9\205 | 9 | 7 | 1.286 | ||||||
4\91 | 4 | 3 | 1.333 | 13 steps adding to lower bound of diatonic fifths (684.17c) is here | |||||
11\250 | 11 | 8 | 1.375 | ||||||
7\159 | 7 | 5 | 1.400 | ||||||
10\227 | 10 | 7 | 1.428 | ||||||
3\68 | 3 | 2 | 1.500 | Stretched 23edo is in this range | |||||
11\249 | 11 | 7 | 1.571 | ||||||
8\181 | 8 | 5 | 1.600 | ||||||
13\294 | 13 | 8 | 1.625 | ||||||
5\113 | 5 | 3 | 1.667 | ||||||
12\271 | 12 | 7 | 1.714 | ||||||
7\158 | 7 | 4 | 1.750 | ||||||
9\203 | 9 | 5 | 1.800 | ||||||
2\45 | 2 | 1 | 2.000 | Basic quartismoid | |||||
9\202 | 9 | 4 | 2.250 | ||||||
7\157 | 7 | 3 | 2.333 | ||||||
12\269 | 12 | 5 | 2.400 | ||||||
5\112 | 5 | 2 | 2.500 | 13 steps adding to 1/4 comma meantone fifth
is around here | |||||
13\291 | 13 | 5 | 2.600 | ||||||
8\179 | 8 | 3 | 2.667 | ||||||
11\246 | 11 | 4 | 2.750 | ||||||
3\67 | 3 | 1 | 3.000 | ||||||
10\223 | 10 | 3 | 3.333 | ||||||
7\156 | 7 | 2 | 3.500 | ||||||
11\245 | 11 | 3 | 3.667 | ||||||
4\89 | 4 | 1 | 4.000 | ||||||
9\200 | 9 | 2 | 4.500 | 13 steps adding to 3/2 perfect fifth is around here | |||||
5\111 | 5 | 1 | 5.000 | ||||||
6\133 | 6 | 1 | 6.000 | ||||||
1\22 | 1 | 0 | → inf |