User:Ganaram inukshuk/Tables: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
Rectangular Horogram as a Table: Added (nearly) all 19edo scale tables for the sake of seeing what it'd look like if it were complete.
Line 1: Line 1:
This page is for xen-related tables that I've made but don't have an exact place elsewhere on the wiki (yet).
This page is for xen-related tables that I've made but don't have an exact place elsewhere on the wiki (yet).


== Rectangular Horogram as a Table ==
== Scale Table ==
I've had the idea of using a [[User:Ganaram inukshuk/Diagrams#MOS Diagrams for a Specific EDO|rectangular horogram]] to represent how MOSses of a specific generator pair are related to one another, only to learn that I can copy-paste the entire tables from Excel into the wiki editor. I doubt I'd be the first person to do this, but this would be a nice way to list the MOSses of an edo. The idea to include scale and step ratio information occurred mid-editing. Here's a few examples.
I've had the idea of using a [[User:Ganaram inukshuk/Diagrams#MOS Diagrams for a Specific EDO|rectangular horogram]] to represent how MOSses of a specific generator pair are related to one another, only to learn that I can copy-paste the entire tables from Excel into the wiki editor. I doubt I'd be the first person to do this, but this would be a nice way to list the MOSses of an edo. The idea to include scale and step ratio information occurred mid-editing. Here's a few examples.
=== 19edo Moment-of-Symmetry Scales ===
Notes:
* The generator pairs are ordered starting from ceil(n/2)\n and floor(n/2)\n and ending at (n-2)\n and 2\n. Including every possible pair from 1\n to (n-1)\n to (n-1)\n to 1\n would be redundant since the pair k\n and (n-k)\n would produce a table that's identical to (n-k)\n and k\n but reversed.
* (n-1)\n and 1\n is not included since it produces a sequence of "monolarge" scales where every scale in the table has the same size of small step.
{| class="wikitable"
{| class="wikitable"
| colspan="19" |'''Step Pattern (19edo)'''
| colspan="19" |'''Step Pattern (19edo)'''
Line 8: Line 15:
|'''[[TAMNAMS#Step ratio spectrum|Step Ratio]]'''
|'''[[TAMNAMS#Step ratio spectrum|Step Ratio]]'''
|'''[[TAMNAMS#Mos pattern names|TAMNAMS Name]] (if applicable)'''
|'''[[TAMNAMS#Mos pattern names|TAMNAMS Name]] (if applicable)'''
|-
| colspan="10" |10
| colspan="9" |9
|1L 1s
|10:9
|Generator Pair
|-
|1
| colspan="9" |9
| colspan="9" |9
|2L 1s
|9:1
|
|-
|1
|1
| colspan="8" |8
|1
| colspan="8" |8
|[[2L 3s]]
|8:1
|Pentic
|-
|1
|1
|1
| colspan="7" |7
|1
|1
| colspan="7" |7
|[[2L 5s]]
|7:1
|Antidiatonic
|-
|1
|1
|1
|1
| colspan="6" |6
|1
|1
|1
| colspan="6" |6
|[[2L 7s]]
|6:1
|Joanatonic
|-
|1
|1
|1
|1
|1
| colspan="5" |5
|1
|1
|1
|1
| colspan="5" |5
|[[2L 9s]]
|5:1
|
|-
|1
|1
|1
|1
|1
|1
| colspan="4" |4
|1
|1
|1
|1
|1
| colspan="4" |4
|[[2L 11s]]
|4:1
|
|-
|1
|1
|1
|1
|1
|1
|1
| colspan="3" |3
|1
|1
|1
|1
|1
|1
| colspan="3" |3
|[[2L 13s]]
|3:1
|
|-
|1
|1
|1
|1
|1
|1
|1
|1
| colspan="2" |2
|1
|1
|1
|1
|1
|1
|1
| colspan="2" |2
|[[2L 15s]]
|2:1
|
|-
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
| colspan="3" |
|}
{| class="wikitable"
| colspan="19" |'''Step Pattern (19edo)'''
|'''MOS'''
|'''Step Ratio'''
|'''TAMNAMS Name (if applicable)'''
|-
|-
| colspan="11" |11
| colspan="11" |11
Line 77: Line 229:
|1
|1
|1
|1
|19ed
| colspan="3" |
|
|
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 155: Line 305:
|1
|1
|1
|1
| colspan="3" |
|}
{| class="wikitable"
| colspan="19" |'''Step Pattern (19edo)'''
|'''MOS'''
|'''Step Ratio'''
|'''TAMNAMS Name (if applicable)'''
|-
| colspan="13" |13
| colspan="6" |6
|1L 1s
|13:6
|Generator Pair
|-
| colspan="7" |7
| colspan="6" |6
| colspan="6" |6
|1L 2s
|7:6
|
|-
|1
| colspan="6" |6
| colspan="6" |6
| colspan="6" |6
|[[3L 1s]]
|6:1
|Tetric (placeholder name for sake of completness)
|-
|1
|1
| colspan="5" |5
|1
| colspan="5" |5
|1
| colspan="5" |5
|[[3L 4s]]
|5:1
|Mosh
|-
|1
|1
|1
| colspan="4" |4
|1
|1
| colspan="4" |4
|1
|1
| colspan="4" |4
|[[3L 7s]]
|4:1
|Sephiroid
|-
|1
|1
|1
|1
| colspan="3" |3
|1
|1
|1
| colspan="3" |3
|1
|1
|1
| colspan="3" |3
|[[3L 10s]]
|3:1
|
|-
|1
|1
|1
|1
|1
| colspan="2" |2
|1
|1
|1
|1
| colspan="2" |2
|1
|1
|1
|1
| colspan="2" |2
|[[3L 13s]]
|2:1
|
|
|-
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
| colspan="3" |
|}
{| class="wikitable"
| colspan="19" |'''Step Pattern (19edo)'''
|'''MOS'''
|'''Step Ratio'''
|'''TAMNAMS Name (if applicable)'''
|-
| colspan="14" |14
| colspan="5" |5
|1L 1s
|14:5
|Generator Pair
|-
| colspan="9" |9
| colspan="5" |5
| colspan="5" |5
|1L 2s
|9:5
|
|
|-
| colspan="4" |4
| colspan="5" |5
| colspan="5" |5
| colspan="5" |5
|[[3L 1s]]
|5:4
|Tetric
|-
| colspan="4" |4
| colspan="4" |4
|1
| colspan="4" |4
|1
| colspan="4" |4
|1
|[[4L 3s]]
|4:1
|Smitonic
|-
| colspan="3" |3
|1
| colspan="3" |3
|1
|1
| colspan="3" |3
|1
|1
| colspan="3" |3
|1
|1
|[[4L 7s]]
|3:1
|Kleistonic (proposed name from 4L 7s page)
|-
| colspan="2" |2
|1
|1
| colspan="2" |2
|1
|1
|1
| colspan="2" |2
|1
|1
|1
| colspan="2" |2
|1
|1
|1
|[[4L 11s]]
|2:1
|
|
|-
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
| colspan="3" |
|}
{| class="wikitable"
| colspan="19" |'''Step Pattern (19edo)'''
|'''MOS'''
|'''Step Ratio'''
|'''TAMNAMS Name (if applicable)'''
|-
| colspan="15" |15
| colspan="4" |4
|1L 1s
|15:4
|Generator Pair
|-
| colspan="11" |11
| colspan="4" |4
| colspan="4" |4
|1L 2s
|11:4
|
|-
| colspan="7" |7
| colspan="4" |4
| colspan="4" |4
| colspan="4" |4
|[[1L 3s]]
|7:4
|
|-
| colspan="3" |3
| colspan="4" |4
| colspan="4" |4
| colspan="4" |4
| colspan="4" |4
|[[4L 1s]]
|4:3
|Manic
|-
| colspan="3" |3
| colspan="3" |3
|1
| colspan="3" |3
|1
| colspan="3" |3
|1
| colspan="3" |3
|1
|[[5L 4s]]
|3:1
|Semiquartal
|-
| colspan="2" |2
|1
| colspan="2" |2
|1
|1
| colspan="2" |2
|1
|1
| colspan="2" |2
|1
|1
| colspan="2" |2
|1
|1
|[[5L 9s]]
|2:1
|
|-
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
| colspan="3" |
|}
{| class="wikitable"
| colspan="19" |'''Step Pattern (19edo)'''
|'''MOS'''
|'''Step Ratio'''
|'''TAMNAMS Name (if applicable)'''
|-
| colspan="16" |16
| colspan="3" |3
|1L 1s
|16:3
|Generator Pair
|-
| colspan="13" |13
| colspan="3" |3
| colspan="3" |3
|1L 2s
|13:3
|
|-
| colspan="10" |10
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
|[[1L 3s]]
|10:3
|
|-
| colspan="7" |7
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
|[[1L 4s]]
|7:3
|
|-
| colspan="4" |4
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
|[[1L 5s]]
|4:3
|
|-
|1
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
| colspan="3" |3
|[[6L 1s]]
|3:1
|Archeotonic
|-
|1
|1
| colspan="2" |2
|1
| colspan="2" |2
|1
| colspan="2" |2
|1
| colspan="2" |2
|1
| colspan="2" |2
|1
| colspan="2" |2
|[[6L 7s]]
|2:1
|
|-
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
| colspan="3" |
|}
{| class="wikitable"
| colspan="19" |'''Step Pattern (19edo)'''
|'''MOS'''
|'''Step Ratio'''
|'''TAMNAMS Name (if applicable)'''
|-
| colspan="17" |17
| colspan="2" |2
|1L 1s
|17:2
|Generator Pair
|-
| colspan="15" |15
| colspan="2" |2
| colspan="2" |2
|1L 2s
|15:2
|
|-
| colspan="13" |13
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
|[[1L 3s]]
|13:2
|
|-
| colspan="11" |11
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
|[[1L 4s]]
|11:2
|
|-
| colspan="9" |9
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
|[[1L 5s]]
|9:2
|
|-
| colspan="7" |7
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
|[[1L 6s]]
|7:2
|
|-
| colspan="5" |5
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
|[[1L 7s]]
|5:2
|
|-
| colspan="3" |3
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
|[[1L 8s]]
|3:2
|
|-
|1
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
| colspan="2" |2
|[[9L 1s]]
|2:1
|Sinatonic
|-
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
|1
| colspan="3" |
|}
|}


== Interval Table ==
== Interval Table ==
wip
wip

Revision as of 09:54, 19 March 2022

This page is for xen-related tables that I've made but don't have an exact place elsewhere on the wiki (yet).

Scale Table

I've had the idea of using a rectangular horogram to represent how MOSses of a specific generator pair are related to one another, only to learn that I can copy-paste the entire tables from Excel into the wiki editor. I doubt I'd be the first person to do this, but this would be a nice way to list the MOSses of an edo. The idea to include scale and step ratio information occurred mid-editing. Here's a few examples.

19edo Moment-of-Symmetry Scales

Notes:

  • The generator pairs are ordered starting from ceil(n/2)\n and floor(n/2)\n and ending at (n-2)\n and 2\n. Including every possible pair from 1\n to (n-1)\n to (n-1)\n to 1\n would be redundant since the pair k\n and (n-k)\n would produce a table that's identical to (n-k)\n and k\n but reversed.
  • (n-1)\n and 1\n is not included since it produces a sequence of "monolarge" scales where every scale in the table has the same size of small step.
Step Pattern (19edo) MOS Step Ratio TAMNAMS Name (if applicable)
10 9 1L 1s 10:9 Generator Pair
1 9 9 2L 1s 9:1
1 1 8 1 8 2L 3s 8:1 Pentic
1 1 1 7 1 1 7 2L 5s 7:1 Antidiatonic
1 1 1 1 6 1 1 1 6 2L 7s 6:1 Joanatonic
1 1 1 1 1 5 1 1 1 1 5 2L 9s 5:1
1 1 1 1 1 1 4 1 1 1 1 1 4 2L 11s 4:1
1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 2L 13s 3:1
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2L 15s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) MOS Step Ratio TAMNAMS Name (if applicable)
11 8 1L 1s 11:8 Generator Pair
3 8 8 2L 1s 8:3
3 3 5 3 5 2L 3s 5:3 Pentic
3 3 3 2 3 3 2 5L 2s 3:2 Diatonic
1 2 1 2 1 2 2 1 2 1 2 2 7L 5s 2:1 M-chromatic
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) MOS Step Ratio TAMNAMS Name (if applicable)
12 7 1L 1s 12:7 Generator Pair
5 7 7 2L 1s 7:5
5 5 2 5 2 3L 2s 5:2 Antipentic
3 2 3 2 2 3 2 2 3L 5s 3:2 Sensoid
1 2 2 1 2 2 2 1 2 2 2 8L 3s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) MOS Step Ratio TAMNAMS Name (if applicable)
13 6 1L 1s 13:6 Generator Pair
7 6 6 1L 2s 7:6
1 6 6 6 3L 1s 6:1 Tetric (placeholder name for sake of completness)
1 1 5 1 5 1 5 3L 4s 5:1 Mosh
1 1 1 4 1 1 4 1 1 4 3L 7s 4:1 Sephiroid
1 1 1 1 3 1 1 1 3 1 1 1 3 3L 10s 3:1
1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 3L 13s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) MOS Step Ratio TAMNAMS Name (if applicable)
14 5 1L 1s 14:5 Generator Pair
9 5 5 1L 2s 9:5
4 5 5 5 3L 1s 5:4 Tetric
4 4 1 4 1 4 1 4L 3s 4:1 Smitonic
3 1 3 1 1 3 1 1 3 1 1 4L 7s 3:1 Kleistonic (proposed name from 4L 7s page)
2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 4L 11s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) MOS Step Ratio TAMNAMS Name (if applicable)
15 4 1L 1s 15:4 Generator Pair
11 4 4 1L 2s 11:4
7 4 4 4 1L 3s 7:4
3 4 4 4 4 4L 1s 4:3 Manic
3 3 1 3 1 3 1 3 1 5L 4s 3:1 Semiquartal
2 1 2 1 1 2 1 1 2 1 1 2 1 1 5L 9s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) MOS Step Ratio TAMNAMS Name (if applicable)
16 3 1L 1s 16:3 Generator Pair
13 3 3 1L 2s 13:3
10 3 3 3 1L 3s 10:3
7 3 3 3 3 1L 4s 7:3
4 3 3 3 3 3 1L 5s 4:3
1 3 3 3 3 3 3 6L 1s 3:1 Archeotonic
1 1 2 1 2 1 2 1 2 1 2 1 2 6L 7s 2:1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step Pattern (19edo) MOS Step Ratio TAMNAMS Name (if applicable)
17 2 1L 1s 17:2 Generator Pair
15 2 2 1L 2s 15:2
13 2 2 2 1L 3s 13:2
11 2 2 2 2 1L 4s 11:2
9 2 2 2 2 2 1L 5s 9:2
7 2 2 2 2 2 2 1L 6s 7:2
5 2 2 2 2 2 2 2 1L 7s 5:2
3 2 2 2 2 2 2 2 2 1L 8s 3:2
1 2 2 2 2 2 2 2 2 2 9L 1s 2:1 Sinatonic
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Interval Table

wip