Würschmidt family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Hemiwürschmidt: update link
Xenllium (talk | contribs)
mNo edit summary
Line 51: Line 51:
POTE generator: ~5/4 = 387.447
POTE generator: ~5/4 = 387.447


Vals: {{Val list| 31, 65d, 96, 127, 223d }}
Optimal GPV sequence: {{Val list| 31, 65d, 96, 127, 223d }}


Badness: 0.024413
Badness: 0.024413
Line 64: Line 64:
POTE generator: ~5/4 = 387.626
POTE generator: ~5/4 = 387.626


Vals: {{Val list| 31, 65d, 161df }}
Optimal GPV sequence: {{Val list| 31, 65d, 161df }}


Badness: 0.023593
Badness: 0.023593
Line 77: Line 77:
POTE generator: ~5/4 = 387.099
POTE generator: ~5/4 = 387.099


Vals: {{Val list| 3def, 28def, 31 }}
Optimal GPV sequence: {{Val list| 3def, 28def, 31 }}


Badness: 0.034382
Badness: 0.034382
Line 107: Line 107:
POTE generator: ~5/4 = 387.407
POTE generator: ~5/4 = 387.407


Vals: {{Val list| 31, 65, 96d, 127d }}
Optimal GPV sequence: {{Val list| 31, 65, 96d, 127d }}


Badness: 0.033436
Badness: 0.033436
Line 156: Line 156:
POTE generator: ~28/25 = 193.840
POTE generator: ~28/25 = 193.840


Vals: {{Val list| 31, 99e, 130, 650ce, 811ce }}
Optimal GPV sequence: {{Val list| 31, 99e, 130, 650ce, 811ce }}


Badness: 0.021069
Badness: 0.021069
Line 169: Line 169:
POTE generator: ~28/25 = 193.829
POTE generator: ~28/25 = 193.829


Vals: {{Val list| 31, 99e, 130, 291, 421e, 551ce }}
Optimal GPV sequence: {{Val list| 31, 99e, 130, 291, 421e, 551ce }}


Badness: 0.023074
Badness: 0.023074
Line 182: Line 182:
POTE generator: ~28/25 = 193.918
POTE generator: ~28/25 = 193.918


Vals: {{Val list| 31, 68e, 99ef }}
Optimal GPV sequence: {{Val list| 31, 68e, 99ef }}


Badness: 0.031199
Badness: 0.031199
Line 195: Line 195:
POTE generator: ~28/25 = 193.884
POTE generator: ~28/25 = 193.884


Vals: {{Val list| 31, 68, 99, 130e, 229e }}
Optimal GPV sequence: {{Val list| 31, 68, 99, 130e, 229e }}


Badness: 0.029270
Badness: 0.029270
Line 208: Line 208:
POTE generator: ~28/25 = 194.004
POTE generator: ~28/25 = 194.004


Vals: {{Val list| 31, 68, 99f, 167ef }}
Optimal GPV sequence: {{Val list| 31, 68, 99f, 167ef }}


Badness: 0.028432
Badness: 0.028432
Line 221: Line 221:
POTE generator: ~28/25 = 193.698
POTE generator: ~28/25 = 193.698


Vals: {{Val list| 6f, 31 }}
Optimal GPV sequence: {{Val list| 6f, 31 }}


Badness: 0.044886
Badness: 0.044886
Line 238: Line 238:
POTE generator: ~147/110 = 503.0404
POTE generator: ~147/110 = 503.0404


Vals: {{Val list| 31, 105be, 136e, 167, 198, 427c }}
Optimal GPV sequence: {{Val list| 31, 105be, 136e, 167, 198, 427c }}


Badness: 0.034814
Badness: 0.034814


=== Semihemiwür ===
=== Semihemiwür ===
<!-- Name revised from "Semihemiwürschimidt" on 11 September 2021 -->
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Line 255: Line 253:
POTE generator: ~28/25 = 193.9021
POTE generator: ~28/25 = 193.9021


Vals: {{Val list| 62e, 68, 130, 198, 328 }}
Optimal GPV sequence: {{Val list| 62e, 68, 130, 198, 328 }}


Badness: 0.044848
Badness: 0.044848
Line 268: Line 266:
POTE generator: ~28/25 = 193.9035
POTE generator: ~28/25 = 193.9035


Vals: {{Val list| 62e, 68, 130, 198, 328 }}
Optimal GPV sequence: {{Val list| 62e, 68, 130, 198, 328 }}


Badness: 0.023388
Badness: 0.023388
Line 281: Line 279:
POTE generator: ~28/25 = 193.9112
POTE generator: ~28/25 = 193.9112


Vals: {{Val list| 62e, 68, 130, 198, 328g, 526cfgg }}
Optimal GPV sequence: {{Val list| 62e, 68, 130, 198, 328g, 526cfgg }}


Badness: 0.028987
Badness: 0.028987
Line 294: Line 292:
POTE generator: ~19/17 = 193.9145
POTE generator: ~19/17 = 193.9145


Vals: {{Val list| 62e, 68, 130, 198, 328g, 526cfgg }}
Optimal GPV sequence: {{Val list| 62e, 68, 130, 198, 328g, 526cfgg }}


Badness: 0.021707
Badness: 0.021707
Line 307: Line 305:
POTE generator: ~28/25 = 193.9112
POTE generator: ~28/25 = 193.9112


Vals: {{Val list| 62eg, 68, 130g, 198g }}
Optimal GPV sequence: {{Val list| 62eg, 68, 130g, 198g }}


Badness: 0.029718
Badness: 0.029718
Line 320: Line 318:
POTE generator: ~19/17 = 193.9428
POTE generator: ~19/17 = 193.9428


Vals: {{Val list| 62egh, 68, 130gh, 198gh }}
Optimal GPV sequence: {{Val list| 62egh, 68, 130gh, 198gh }}


Badness: 0.029545
Badness: 0.029545

Revision as of 06:14, 8 January 2022

The 5-limit parent comma for the würschmidt family (würschmidt is sometimes spelled wuerschmidt) is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt. Its monzo is [17 1 -8, and flipping that yields ⟨⟨ 8 1 17 ]] for the wedgie. This tells us the generator is a classic major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)8 × 393216/390625 = 6.

10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning.

MOS scales of würschmidt are even more extreme than those of magic. Proper scales does not appear until 28, 31 or even 34 notes.

The second comma of the normal comma list defines which 7-limit family member we are looking at. Würschmidt adds [12 3 -6 -1, worschmidt adds 65625/65536 = [-16 1 5 1, whirrschmidt adds 4375/4374 = [-1 -7 4 1 and hemiwürschmidt adds 6144/6125 = [11 1 -3 -2.

Würschmidt

Subgroup: 2.3.5

Comma list: 393216/390625

Mapping: [1 7 3], 0 -8 -1]]

POTE generator: ~5/4 = 387.799

Template:Val list

Badness: 0.040603

Music

Septimal würschmidt

Würschmidt, aside from the commas listed above, also tempers out 225/224. 31edo or 127edo can be used as tunings. It extends naturally to an 11-limit version ⟨⟨ 8 1 18 20 … ]] which also tempers out 99/98, 176/175 and 243/242. 127edo is again an excellent tuning for 11-limit würschmidt, as well as for minerva, the 11-limit rank-3 temperament tempering out 99/98 and 176/175.

Subgroup: 2.3.5.7

Comma list: 225/224, 8748/8575

Mapping: [1 7 3 15], 0 -8 -1 -18]]

Wedgie⟨⟨ 8 1 18 -17 6 39 ]]

POTE generator: ~5/4 = 387.383

Template:Val list

Badness: 0.050776

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 176/175, 243/242

Mapping: [1 7 3 15 17], 0 -8 -1 -18 -20]]

POTE generator: ~5/4 = 387.447

Optimal GPV sequence: Template:Val list

Badness: 0.024413

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 144/143, 176/175, 275/273

Mapping: [1 7 3 15 17 1], 0 -8 -1 -18 -20 4]]

POTE generator: ~5/4 = 387.626

Optimal GPV sequence: Template:Val list

Badness: 0.023593

Worseschmidt

Subgroup: 2.3.5.7.11.13

Commas: 66/65, 99/98, 105/104, 243/242

Mapping: [1 7 3 15 17 22], 0 -8 -1 -18 -20 -27]]

POTE generator: ~5/4 = 387.099

Optimal GPV sequence: Template:Val list

Badness: 0.034382

Worschmidt

Worschmidt tempers out 126/125 rather than 225/224, and can use 31edo, 34edo, or 127edo as a tuning. If 127 is used, note that the val is 127 201 295 356] (127d) and not 127 201 295 357] as with würschmidt. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.

Subgroup: 2.3.5.7

Comma list: 126/125, 33075/32768

Mapping: [1 7 3 -6], 0 -8 -1 13]]

Wedgie⟨⟨ 8 1 -13 -17 -43 -33 ]]

POTE generator: ~5/4 = 387.392

Template:Val list

Badness: 0.064614

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 243/242, 385/384

Mapping: [1 7 3 -6 17], 0 -8 -1 13 -20]]

POTE generator: ~5/4 = 387.407

Optimal GPV sequence: Template:Val list

Badness: 0.033436

Whirrschmidt

99edo is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with 7 mapped to the 52nd generator step.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 393216/390625

Mapping: [1 7 3 38], 0 -8 -1 -52]]

Wedgie⟨⟨ 8 1 52 -17 60 118 ]]

POTE generator: ~5/4 = 387.881

Template:Val list

Badness: 0.086334

Hemiwürschmidt

Hemiwürschmidt (sometimes spelled hemiwuerschmidt), which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 2401/2400, 3136/3125, and 6144/6125. 68edo, 99edo and 130edo can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, ⟨⟨ 16 2 5 40 -39 -49 -48 28 … ]].

Subgroup: 2.3.5.7

Comma list: 2401/2400, 3136/3125

Mapping: [1 15 4 7], 0 -16 -2 -5]]

Wedgie⟨⟨ 16 2 5 -34 -37 6 ]]

POTE generator: ~28/25 = 193.898

Template:Val list

Badness: 0.020307

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 3136/3125

Mapping: [1 15 4 7 37], 0 -16 -2 -5 -40]]

POTE generator: ~28/25 = 193.840

Optimal GPV sequence: Template:Val list

Badness: 0.021069

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 441/440, 3584/3575

Mapping: [1 15 4 7 37 -29], 0 -16 -2 -5 -40 39]]

POTE generator: ~28/25 = 193.829

Optimal GPV sequence: Template:Val list

Badness: 0.023074

Hemithir

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 275/273

Mapping: [1 15 4 7 37 -3], 0 -16 -2 -5 -40 8]]

POTE generator: ~28/25 = 193.918

Optimal GPV sequence: Template:Val list

Badness: 0.031199

Hemiwur

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 1375/1372

Mapping: [1 15 4 7 11], 0 -16 -2 -5 -9]]

POTE generator: ~28/25 = 193.884

Optimal GPV sequence: Template:Val list

Badness: 0.029270

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 275/273

Mapping: [1 15 4 7 11 -3], 0 -16 -2 -5 -9 8]]

POTE generator: ~28/25 = 194.004

Optimal GPV sequence: Template:Val list

Badness: 0.028432

Hemiwar

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 105/104, 121/120, 1375/1372

Mapping: [1 15 4 7 11 23], 0 -16 -2 -5 -9 -23]]

POTE generator: ~28/25 = 193.698

Optimal GPV sequence: Template:Val list

Badness: 0.044886

Quadrawürschmidt

This has been documented in Graham Breed's temperament finder as semihemiwürschmidt, but quadrawürschmidt arguably makes more sense.

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 3136/3125

Mapping: [1 15 4 7 24], 0 -32 -4 -10 -49]]

Mapping generators: ~2, ~147/110

POTE generator: ~147/110 = 503.0404

Optimal GPV sequence: Template:Val list

Badness: 0.034814

Semihemiwür

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3136/3125, 9801/9800

Mapping: [2 14 6 9 -10], 0 -16 -2 -5 25]]

Mapping generators: ~99/70, ~495/392

POTE generator: ~28/25 = 193.9021

Optimal GPV sequence: Template:Val list

Badness: 0.044848

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715, 3136/3125

Mapping: [2 14 6 9 -10 25], 0 -16 -2 -5 25 -26]]

POTE generator: ~28/25 = 193.9035

Optimal GPV sequence: Template:Val list

Badness: 0.023388

Semihemiwürat

Subgroup: 2.3.5.7.11.13.17

Comma list: 289/288, 442/441, 561/560, 676/675, 1632/1625

Mapping: [2 14 6 9 -10 25 19], 0 -16 -2 -5 25 -26 -16]]

POTE generator: ~28/25 = 193.9112

Optimal GPV sequence: Template:Val list

Badness: 0.028987

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 289/288, 442/441, 456/455, 476/475, 561/560, 627/625

Mapping: [2 14 6 9 -10 25 19 20], 0 -16 -2 -5 25 -26 -16 -17]]

POTE generator: ~19/17 = 193.9145

Optimal GPV sequence: Template:Val list

Badness: 0.021707

Semihemiwürand

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 676/675, 715/714, 1001/1000, 1225/1224

Mapping: [2 14 6 9 -10 25 -4], 0 -16 -2 -5 25 -26 18]]

POTE generator: ~28/25 = 193.9112

Optimal GPV sequence: Template:Val list

Badness: 0.029718

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 256/255, 286/285, 400/399, 476/475, 495/494, 1225/1224

Mapping: [2 14 6 9 -10 25 -4 -3], 0 -16 -2 -5 25 -26 18 17]]

POTE generator: ~19/17 = 193.9428

Optimal GPV sequence: Template:Val list

Badness: 0.029545

Relationships to other temperaments

2-Würschmidt, the temperament with all the same commas as würschmidt but a generator of twice the size, is equivalent to skwares as a 2.3.7.11 temperament.