8019/8000: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m It's a small comma
Godtone (talk | contribs)
m added name and a little more information
Line 4: Line 4:
| Monzo = -6 6 -3 0 1
| Monzo = -6 6 -3 0 1
| Cents = 4.1068
| Cents = 4.1068
| Name =  
| Name = trimitone comma
| Color name =  
| Color name =  
| FJS name =  
| FJS name =  
| Sound =  
| Sound =  
}}
}}
'''8019/8000''' is a [[comma]] in the 2.3.5.11 subgroup, equal to ([[11/8]])/([[10/9]])<sup>3</sup>.
'''8019/8000''', the '''trimitone comma''' (for "triple minor (whole) tone"), is a [[comma]] in the 2.3.5.11 subgroup, equal to ([[11/8]])/([[10/9]])<sup>3</sup>.


== Temperaments ==
== Temperaments ==
In terms of microtempering the 2.3.5.11 subgroup, it may combine well with the [[schisma]] as doing so gives lower-complexity interpretations to the [[5-limit]] "tritones" of (10/9)<sup>3</sup> and [[729/512|(9/8)<sup>3</sup>]] and their octave-complements, which results in the 53&65 temperament in the 2.3.5.11 subgroup. (The term "tritones" is being used here in the sense of stacking 3 tones, as calling (10/9)<sup>3</sup> a "tritone" is questionable.) For optimising this temperament, [[183edo]] is recommendable, although [[65edo]] provides a less accurate tuning at the benefit of a more manageable number of tones (and at the benefit of being a superset of [[5edo]] and [[13edo]], thus potentially making it easier to conceptualise). If extended to the full [[11-limit|11-]] or [[13-limit]], it is closely related to [[Schismatic family #Bischismic|bischismic]], which also tempers [[3136/3125]].
In terms of microtempering the 2.3.5.11 subgroup, it may combine well with the [[schisma]] as doing so gives lower-complexity interpretations to the [[5-limit]] "tritones" of (10/9)<sup>3</sup> and [[729/512|(9/8)<sup>3</sup>]] and their octave-complements, which results in the 53&65 (or equivalently 12&53) temperament in the 2.3.5.11 subgroup. (The term "tritones" is being used here in the sense of stacking 3 tones, as calling (10/9)<sup>3</sup> a "tritone" is questionable.) For optimising this temperament, [[183edo]] is recommendable, although [[65edo]] provides a less accurate tuning at the benefit of a more manageable number of tones (and at the benefit of being a superset of [[5edo]] and [[13edo]], thus potentially making it easier to conceptualise). This temperament is therefore great for 8:9:10:11:12 chords. If extended to the full [[11-limit|11-]] or [[13-limit]], it is closely related to [[Schismatic family #Bischismic|bischismic]], which also tempers [[3136/3125]].


== See also ==
== See also ==

Revision as of 01:58, 9 April 2021

Interval information
Ratio 8019/8000
Factorization 2-6 × 36 × 5-3 × 11
Monzo [-6 6 -3 0 1
Size in cents 4.106806¢
Name trimitone comma
FJS name [math]\displaystyle{ \text{d1}^{11}_{5,5,5} }[/math]
Special properties reduced
Tenney height (log2 nd) 25.935
Weil height (log2 max(n, d)) 25.9384
Wilson height (sopfr(nd)) 56
Open this interval in xen-calc

8019/8000, the trimitone comma (for "triple minor (whole) tone"), is a comma in the 2.3.5.11 subgroup, equal to (11/8)/(10/9)3.

Temperaments

In terms of microtempering the 2.3.5.11 subgroup, it may combine well with the schisma as doing so gives lower-complexity interpretations to the 5-limit "tritones" of (10/9)3 and (9/8)3 and their octave-complements, which results in the 53&65 (or equivalently 12&53) temperament in the 2.3.5.11 subgroup. (The term "tritones" is being used here in the sense of stacking 3 tones, as calling (10/9)3 a "tritone" is questionable.) For optimising this temperament, 183edo is recommendable, although 65edo provides a less accurate tuning at the benefit of a more manageable number of tones (and at the benefit of being a superset of 5edo and 13edo, thus potentially making it easier to conceptualise). This temperament is therefore great for 8:9:10:11:12 chords. If extended to the full 11- or 13-limit, it is closely related to bischismic, which also tempers 3136/3125.

See also