Didymus rank three family: Difference between revisions
+ naming history |
m Cleanup and stuff |
||
Line 2: | Line 2: | ||
The '''didymus rank-3 family''' are rank-3 temperaments tempering out the didymus comma, [[81/80]]. If nothing else is tempered out we have a [[7-limit]] [[planar temperament]], with an [[11-limit]] comma we get an 11-limit temperament, and so forth. | The '''didymus rank-3 family''' are rank-3 temperaments tempering out the didymus comma, [[81/80]]. If nothing else is tempered out we have a [[7-limit]] [[planar temperament]], with an [[11-limit]] comma we get an 11-limit temperament, and so forth. | ||
Most of these temperaments were named by [[Gene Ward Smith]] in 2010<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_100647.html#100648 | Most of these temperaments were named by [[Gene Ward Smith]] in 2010<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_100647.html#100648 Yahoo! Tuning Group | ''Higher-rank meantone extensions (muse temperaments?)'']</ref>. | ||
Temperaments discussed elsewhere include: | Temperaments discussed elsewhere include: | ||
Line 14: | Line 14: | ||
{{Mapping|legend=1| 1 0 -4 0 | 0 1 4 0 | 0 0 0 1 }} | {{Mapping|legend=1| 1 0 -4 0 | 0 1 4 0 | 0 0 0 1 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 696.2387{{c}}, ~7/4 = 964.9090{{c}} | ||
{{Optimal ET sequence|legend=1| 12, 19, 31, 81 }} | {{Optimal ET sequence|legend=1| 12, 19, 31, 81 }} | ||
[[Badness]]: 0.095 × 10<sup>-3</sup> | [[Badness]] (Smith): 0.095 × 10<sup>-3</sup> | ||
== Euterpe == | == Euterpe == | ||
Line 27: | Line 27: | ||
{{Mapping|legend=1| 1 0 -4 0 1 | 0 1 4 0 -2 | 0 0 0 1 2 }} | {{Mapping|legend=1| 1 0 -4 0 1 | 0 1 4 0 -2 | 0 0 0 1 2 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 696.1982{{c}}, ~7/4 = 968.4280{{c}} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 36: | Line 36: | ||
{{Optimal ET sequence|legend=1| 12, 17c, 19e, 26, 31, 88 }} | {{Optimal ET sequence|legend=1| 12, 17c, 19e, 26, 31, 88 }} | ||
[[Badness]]: 0.536 × 10<sup>-3</sup> | [[Badness]] (Smith): 0.536 × 10<sup>-3</sup> | ||
== Calliope == | == Calliope == | ||
Line 45: | Line 45: | ||
{{Mapping|legend=1| 1 0 -4 0 -6 | 0 1 4 0 6 | 0 0 0 1 0 }} | {{Mapping|legend=1| 1 0 -4 0 -6 | 0 1 4 0 6 | 0 0 0 1 0 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 696.1982{{c}}, ~7/4 = 968.4280{{c}} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 54: | Line 54: | ||
{{Optimal ET sequence|legend=1| 7d, 12, 19, 26, 45 }} | {{Optimal ET sequence|legend=1| 7d, 12, 19, 26, 45 }} | ||
[[Badness]]: 0.530 × 10<sup>-3</sup> | [[Badness]] (Smith): 0.530 × 10<sup>-3</sup> | ||
== Erato == | == Erato == | ||
Line 63: | Line 63: | ||
{{Mapping|legend=1| 1 0 -4 -13 0 | 0 1 4 10 0 | 0 0 0 0 1 }} | {{Mapping|legend=1| 1 0 -4 -13 0 | 0 1 4 10 0 | 0 0 0 0 1 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 696.4949{{c}}, ~11/8 = 547.0252{{c}} | ||
{{Optimal ET sequence|legend=1| 12, 19, 31, 50, 81 }} | {{Optimal ET sequence|legend=1| 12, 19, 31, 50, 81 }} | ||
[[Badness]]: 0.558 × 10<sup>-3</sup> | [[Badness]] (Smith): 0.558 × 10<sup>-3</sup> | ||
=== 13-limit === | === 13-limit === | ||
Line 76: | Line 76: | ||
Mapping: {{mapping| 1 0 -4 -13 0 -20 | 0 1 4 10 0 15 | 0 0 0 0 1 0 }} | Mapping: {{mapping| 1 0 -4 -13 0 -20 | 0 1 4 10 0 15 | 0 0 0 0 1 0 }} | ||
Optimal tuning (POTE): ~2 = | Optimal tuning (POTE): ~2 = 1200.0000{{c}}, ~3/2 = 695.9883{{c}}, ~11/8 = 545.6817{{c}} | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 12f, 19, 31, 50, 81 }} | ||
== Clio == | == Clio == | ||
Line 87: | Line 87: | ||
{{Mapping|legend=1| 1 0 -4 0 -12 | 0 1 4 0 8 | 0 0 0 1 1 }} | {{Mapping|legend=1| 1 0 -4 0 -12 | 0 1 4 0 8 | 0 0 0 1 1 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 697.2502{{c}}, ~7/4 = 968.6295{{c}} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 96: | Line 96: | ||
{{Optimal ET sequence|legend=1| 7, 12, 19e, 24, 31, 105, 129 }} | {{Optimal ET sequence|legend=1| 7, 12, 19e, 24, 31, 105, 129 }} | ||
[[Badness]]: 0.738 × 10<sup>-3</sup> | [[Badness]] (Smith): 0.738 × 10<sup>-3</sup> | ||
== Polyhymnia | == Polyhymnia == | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 106: | Line 106: | ||
{{Mapping|legend=1| 1 0 -4 0 11 | 0 1 4 0 -3 | 0 0 0 1 -1 }} | {{Mapping|legend=1| 1 0 -4 0 11 | 0 1 4 0 -3 | 0 0 0 1 -1 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 696.2305{{c}}, ~7/4 = 964.8695{{c}} | ||
{{Optimal ET sequence|legend=1| 7, 12e, 19, 24, 26, 31 }} | {{Optimal ET sequence|legend=1| 7, 12e, 19, 24, 26, 31 }} | ||
Line 112: | Line 112: | ||
Scales: [[polyhymnia12]] | Scales: [[polyhymnia12]] | ||
== Thalia | == Thalia == | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 119: | Line 119: | ||
{{Mapping|legend=1| 1 0 -4 0 5 | 0 1 4 0 -1 | 0 0 0 1 0 }} | {{Mapping|legend=1| 1 0 -4 0 5 | 0 1 4 0 -1 | 0 0 0 1 0 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 692.0796{{c}}, ~7/4 = 950.2565{{c}} | ||
{{Optimal ET sequence|legend=1| 5, 7, 12e, 14c, 19e }} | {{Optimal ET sequence|legend=1| 5, 7, 12e, 14c, 19e }} | ||
== Melpomene | == Melpomene == | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 130: | Line 130: | ||
{{Mapping|legend=1| 1 0 -4 0 7 | 0 1 4 0 -4 | 0 0 0 1 1 }} | {{Mapping|legend=1| 1 0 -4 0 7 | 0 1 4 0 -4 | 0 0 0 1 1 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 699.2230{{c}}, ~7/4 = 964.2363{{c}} | ||
{{Optimal ET sequence|legend=1| 7d, 12, 17c, 19, 24, 31e, 36 }} | {{Optimal ET sequence|legend=1| 7d, 12, 17c, 19, 24, 31e, 36 }} | ||
== Terpsichore == | |||
== Terpsichore | |||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 142: | Line 141: | ||
{{Mapping|legend=1| 1 0 -4 0 -2 | 0 1 4 0 7 | 0 0 0 1 -2 }} | {{Mapping|legend=1| 1 0 -4 0 -2 | 0 1 4 0 7 | 0 0 0 1 -2 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = | [[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000{{c}}, ~3/2 = 696.2358{{c}}, ~7/4 = 964.0006{{c}} | ||
{{Optimal ET sequence|legend=1| 14c, 17c, 19, 31, 81, 112b }} | {{Optimal ET sequence|legend=1| 14c, 17c, 19, 31, 81, 112b }} | ||
[[Badness]]: 0.850 × 10<sup>-3</sup> | [[Badness]] (Smith): 0.850 × 10<sup>-3</sup> | ||
[[Complexity spectrum]]: 4/3, 10/9, 9/8, 6/5, 9/7, 7/5, 7/6, 5/4, 8/7, 11/9, 12/11, 11/8, 11/10, 14/11 | [[Complexity spectrum]]: 4/3, 10/9, 9/8, 6/5, 9/7, 7/5, 7/6, 5/4, 8/7, 11/9, 12/11, 11/8, 11/10, 14/11 |
Latest revision as of 12:48, 26 August 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The didymus rank-3 family are rank-3 temperaments tempering out the didymus comma, 81/80. If nothing else is tempered out we have a 7-limit planar temperament, with an 11-limit comma we get an 11-limit temperament, and so forth.
Most of these temperaments were named by Gene Ward Smith in 2010[1].
Temperaments discussed elsewhere include:
- Urania (+243/242 or 121/120) → Rastmic rank three clan
Didymus
Subgroup: 2.3.5.7
Comma list: 81/80
Mapping: [⟨1 0 -4 0], ⟨0 1 4 0], ⟨0 0 0 1]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 696.2387 ¢, ~7/4 = 964.9090 ¢
Optimal ET sequence: 12, 19, 31, 81
Badness (Smith): 0.095 × 10-3
Euterpe
Subgroup: 2.3.5.7.11
Comma list: 81/80, 99/98
Mapping: [⟨1 0 -4 0 1], ⟨0 1 4 0 -2], ⟨0 0 0 1 2]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 696.1982 ¢, ~7/4 = 968.4280 ¢
- [[1 0 0 0 0⟩, [1 0 1/4 0 0⟩, [0 0 1 0 0⟩, [0 0 0 1 0⟩, [-1 0 -1/2 2 0⟩]
- Eigenmonzos (unchanged-intervals): 2, 5, 7
Optimal ET sequence: 12, 17c, 19e, 26, 31, 88
Badness (Smith): 0.536 × 10-3
Calliope
Subgroup: 2.3.5.7.11
Comma list: 45/44, 81/80
Mapping: [⟨1 0 -4 0 -6], ⟨0 1 4 0 6], ⟨0 0 0 1 0]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 696.1982 ¢, ~7/4 = 968.4280 ¢
- [[1 0 0 0 0⟩, [1 0 0 0 1/6⟩, [0 0 0 0 2/3⟩, [1 -1 0 1 1/6⟩, [0 0 0 0 1⟩]
- Unchanged-interval (eigenmonzo) basis: 2.7/3.11
Optimal ET sequence: 7d, 12, 19, 26, 45
Badness (Smith): 0.530 × 10-3
Erato
Subgroup: 2.3.5.7.11
Comma list: 81/80, 126/125
Mapping: [⟨1 0 -4 -13 0], ⟨0 1 4 10 0], ⟨0 0 0 0 1]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 696.4949 ¢, ~11/8 = 547.0252 ¢
Optimal ET sequence: 12, 19, 31, 50, 81
Badness (Smith): 0.558 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 81/80, 105/104, 126/125
Mapping: [⟨1 0 -4 -13 0 -20], ⟨0 1 4 10 0 15], ⟨0 0 0 0 1 0]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 695.9883 ¢, ~11/8 = 545.6817 ¢
Optimal ET sequence: 12f, 19, 31, 50, 81
Clio
Subgroup: 2.3.5.7.11
Comma list: 81/80, 176/175
Mapping: [⟨1 0 -4 0 -12], ⟨0 1 4 0 8], ⟨0 0 0 1 1]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 697.2502 ¢, ~7/4 = 968.6295 ¢
- [1 0 0 0 0⟩, [1 0 1/4 0 0⟩, [0 0 1 0 0⟩, [0 0 0 1 0⟩, [-4 0 2 1 0⟩]
- Eigenmonzos (unchanged-intervals): 2, 5, 7
Optimal ET sequence: 7, 12, 19e, 24, 31, 105, 129
Badness (Smith): 0.738 × 10-3
Polyhymnia
Subgroup: 2.3.5.7.11
Comma list: 81/80, 385/384
Mapping: [⟨1 0 -4 0 11], ⟨0 1 4 0 -3], ⟨0 0 0 1 -1]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 696.2305 ¢, ~7/4 = 964.8695 ¢
Optimal ET sequence: 7, 12e, 19, 24, 26, 31
Scales: polyhymnia12
Thalia
Subgroup: 2.3.5.7.11
Comma list: 33/32, 55/54
Mapping: [⟨1 0 -4 0 5], ⟨0 1 4 0 -1], ⟨0 0 0 1 0]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 692.0796 ¢, ~7/4 = 950.2565 ¢
Optimal ET sequence: 5, 7, 12e, 14c, 19e
Melpomene
Subgroup: 2.3.5.7.11
Comma list: 81/80, 56/55
Mapping: [⟨1 0 -4 0 7], ⟨0 1 4 0 -4], ⟨0 0 0 1 1]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 699.2230 ¢, ~7/4 = 964.2363 ¢
Optimal ET sequence: 7d, 12, 17c, 19, 24, 31e, 36
Terpsichore
Subgroup: 2.3.5.7.11
Comma list: 81/80, 540/539
Mapping: [⟨1 0 -4 0 -2], ⟨0 1 4 0 7], ⟨0 0 0 1 -2]]
Optimal tuning (POTE): ~2 = 1200.0000 ¢, ~3/2 = 696.2358 ¢, ~7/4 = 964.0006 ¢
Optimal ET sequence: 14c, 17c, 19, 31, 81, 112b
Badness (Smith): 0.850 × 10-3
Complexity spectrum: 4/3, 10/9, 9/8, 6/5, 9/7, 7/5, 7/6, 5/4, 8/7, 11/9, 12/11, 11/8, 11/10, 14/11