Lumatone mapping for 53edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
Other mappings: Add Bryan Deister's 8L 1s Lumatone mapping for 53edo
Line 37: Line 37:
==== Expanded ====
==== Expanded ====
{{Lumatone EDO mapping|n=53|start=5|xstep=9|ystep=-7}}
{{Lumatone EDO mapping|n=53|start=5|xstep=9|ystep=-7}}
=== 8L 1s ===
[[Bryan Deister]] has demonstrated the [[8L 1s]] mapping in [https://www.youtube.com/shorts/r-Tzq33OGM4 ''microtonal improvisation in 53edo''] (2025). The generator is 5\53, [[14/13]] ~ [[13/12]]. The range is about three and a half octaves (sloping upwards), but in the demonstration video it appears less due to use of only 1 MIDI channel, which cuts off notes at both the left and right margins.
{{Lumatone EDO mapping|n=53|start=37|xstep=6|ystep=-1}}


{{Navbox Lumatone}}
{{Navbox Lumatone}}

Revision as of 10:45, 24 May 2025

There are many conceivable ways to map 53edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

Diatonic

This is "Preset 9 — 53-ET Bosanquet" in version 1.0 of the official Lumatone manual, and "Preset 9 — 53-EDO Bosanquet" in version 1.21.

2
11
6
15
24
33
42
1
10
19
28
37
46
2
11
5
14
23
32
41
50
6
15
24
33
42
0
9
18
27
36
45
1
10
19
28
37
46
2
11
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
33
42
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
2
11
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
33
42
51
7
16
25
34
43
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
2
11
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
33
42
33
42
51
7
16
25
34
43
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
33
42
51
7
16
25
34
43
52
8
17
26
35
44
0
9
18
27
36
45
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
40
49
33
42
51
7
16
25
34
43
52
8
17
26
35
44
11
20
29
38
47
3
12
21
30
39
48
33
42
51
7
16
25
34
43
11
20
29
38
47
33
42

Hanson

Since 53edo is a schismatic tuning, the best approximation to 5/4 is the diminished fourth. The Hanson mapping makes playing familiar 5-limit chords easier, but the 4L 3s mapping does not quite span the full gamut.

5
16
8
19
30
41
52
0
11
22
33
44
2
13
24
3
14
25
36
47
5
16
27
38
49
7
48
6
17
28
39
50
8
19
30
41
52
10
21
32
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
43
1
12
23
34
45
3
14
25
36
47
5
16
27
38
49
7
18
29
40
46
4
15
26
37
48
6
17
28
39
50
8
19
30
41
52
10
21
32
43
1
12
23
38
49
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
52
10
21
32
43
1
12
23
34
45
3
14
25
36
47
5
16
27
38
49
7
18
29
40
51
9
20
31
24
35
46
4
15
26
37
48
6
17
28
39
50
8
19
30
41
52
10
21
32
43
1
12
23
34
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
32
43
1
12
23
34
45
3
14
25
36
47
5
16
27
38
49
7
18
29
15
26
37
48
6
17
28
39
50
8
19
30
41
52
10
21
32
40
51
9
20
31
42
0
11
22
33
44
2
13
24
23
34
45
3
14
25
36
47
5
16
27
48
6
17
28
39
50
8
19
31
42
0
11
22
3
14


The expanded 4L 7s mapping does cover the entire gamut, but puts octaves all over the place.

6
14
9
17
25
33
41
4
12
20
28
36
44
52
7
7
15
23
31
39
47
2
10
18
26
34
2
10
18
26
34
42
50
5
13
21
29
37
45
0
5
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
0
8
16
24
32
40
48
3
11
19
27
35
43
51
6
14
22
30
38
46
3
11
19
27
35
43
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
12
20
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
12
20
28
36
44
52
7
15
23
31
39
9
17
25
33
41
49
4
12
20
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
5
13
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
5
13
21
29
37
45
0
8
16
2
10
18
26
34
42
50
5
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
35
43
51
6
14
48
3
11
19
27
35
43
51
6
14
22
30
38
46
1
9
17
14
22
30
38
46
1
9
17
25
33
41
49
4
12
41
49
4
12
20
28
36
44
52
7
15
7
15
23
31
39
47
2
10
34
42
50
5
13
0
8

Buzzard

For easy access to single step movements and both the third and seventh harmonics, the buzzard mapping is quite effective.

8
18
9
19
29
39
49
0
10
20
30
40
50
7
17
1
11
21
31
41
51
8
18
28
38
48
45
2
12
22
32
42
52
9
19
29
39
49
6
16
46
3
13
23
33
43
0
10
20
30
40
50
7
17
27
37
47
37
47
4
14
24
34
44
1
11
21
31
41
51
8
18
28
38
48
5
15
38
48
5
15
25
35
45
2
12
22
32
42
52
9
19
29
39
49
6
16
26
36
46
29
39
49
6
16
26
36
46
3
13
23
33
43
0
10
20
30
40
50
7
17
27
37
47
4
14
40
50
7
17
27
37
47
4
14
24
34
44
1
11
21
31
41
51
8
18
28
38
48
5
15
25
35
45
8
18
28
38
48
5
15
25
35
45
2
12
22
32
42
52
9
19
29
39
49
6
16
26
36
46
39
49
6
16
26
36
46
3
13
23
33
43
0
10
20
30
40
50
7
17
27
37
47
7
17
27
37
47
4
14
24
34
44
1
11
21
31
41
51
8
18
28
38
38
48
5
15
25
35
45
2
12
22
32
42
52
9
19
29
39
6
16
26
36
46
3
13
23
33
43
0
10
20
30
37
47
4
14
24
34
44
1
11
21
31
5
15
25
35
45
2
12
22
36
46
3
13
23
4
14

Amity

The Lumatone mapping for amity mapping also puts 5-limit chords within very easy reach and provides a relatively even heptatonic scale.

47
2
1
9
17
25
33
0
8
16
24
32
40
48
3
7
15
23
31
39
47
2
10
18
26
34
6
14
22
30
38
46
1
9
17
25
33
41
49
4
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
35
12
20
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
5
19
27
35
43
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
12
20
28
36
18
26
34
42
50
5
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
35
43
51
6
33
41
49
4
12
20
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
5
13
21
29
37
3
11
19
27
35
43
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
12
20
28
36
44
34
42
50
5
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
35
43
51
4
12
20
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
35
43
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
5
13
21
29
37
45
0
8
16
24
32
40
48
3
36
44
52
7
15
23
31
39
47
2
10
6
14
22
30
38
46
1
9
37
45
0
8
16
7
15

Other mappings

As with the Hanson mappings, the Orwell and Barbados mappings both give over six octaves of range, but their compressed 4L 1s mappings miss many notes along the way. To cover the full gamut, Orwell can be expanded to 4L 5s and Barbados to 5L 4s, but the range is reduced to just over four octaves and the octaves are tilted downwards.

Orwell

Compressed

6
18
11
23
35
47
6
4
16
28
40
52
11
23
35
9
21
33
45
4
16
28
40
52
11
23
2
14
26
38
50
9
21
33
45
4
16
28
40
52
7
19
31
43
2
14
26
38
50
9
21
33
45
4
16
28
40
0
12
24
36
48
7
19
31
43
2
14
26
38
50
9
21
33
45
4
16
5
17
29
41
0
12
24
36
48
7
19
31
43
2
14
26
38
50
9
21
33
45
4
51
10
22
34
46
5
17
29
41
0
12
24
36
48
7
19
31
43
2
14
26
38
50
9
21
33
15
27
39
51
10
22
34
46
5
17
29
41
0
12
24
36
48
7
19
31
43
2
14
26
38
50
9
21
44
3
15
27
39
51
10
22
34
46
5
17
29
41
0
12
24
36
48
7
19
31
43
2
14
26
32
44
3
15
27
39
51
10
22
34
46
5
17
29
41
0
12
24
36
48
7
19
31
8
20
32
44
3
15
27
39
51
10
22
34
46
5
17
29
41
0
12
24
49
8
20
32
44
3
15
27
39
51
10
22
34
46
5
17
29
25
37
49
8
20
32
44
3
15
27
39
51
10
22
13
25
37
49
8
20
32
44
3
15
27
42
1
13
25
37
49
8
20
30
42
1
13
25
6
18

Expanded

44
49
51
3
8
13
18
0
5
10
15
20
25
30
35
7
12
17
22
27
32
37
42
47
52
4
9
14
19
24
29
34
39
44
49
1
6
11
16
21
16
21
26
31
36
41
46
51
3
8
13
18
23
28
33
38
43
18
23
28
33
38
43
48
0
5
10
15
20
25
30
35
40
45
50
2
7
25
30
35
40
45
50
2
7
12
17
22
27
32
37
42
47
52
4
9
14
19
24
29
27
32
37
42
47
52
4
9
14
19
24
29
34
39
44
49
1
6
11
16
21
26
31
36
41
46
39
44
49
1
6
11
16
21
26
31
36
41
46
51
3
8
13
18
23
28
33
38
43
48
0
5
10
15
3
8
13
18
23
28
33
38
43
48
0
5
10
15
20
25
30
35
40
45
50
2
7
12
17
22
25
30
35
40
45
50
2
7
12
17
22
27
32
37
42
47
52
4
9
14
19
24
29
42
47
52
4
9
14
19
24
29
34
39
44
49
1
6
11
16
21
26
31
11
16
21
26
31
36
41
46
51
3
8
13
18
23
28
33
38
28
33
38
43
48
0
5
10
15
20
25
30
35
40
50
2
7
12
17
22
27
32
37
42
47
14
19
24
29
34
39
44
49
36
41
46
51
3
0
5

Semiquartal

Compressed

32
43
41
52
10
21
32
39
50
8
19
30
41
52
10
48
6
17
28
39
50
8
19
30
41
52
46
4
15
26
37
48
6
17
28
39
50
8
19
30
2
13
24
35
46
4
15
26
37
48
6
17
28
39
50
8
19
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
6
17
28
39
50
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
6
17
28
39
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
6
17
27
38
49
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
6
5
16
27
38
49
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
47
5
16
27
38
49
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
25
36
47
5
16
27
38
49
7
18
29
40
51
9
20
31
42
0
11
22
14
25
36
47
5
16
27
38
49
7
18
29
40
51
9
20
31
45
3
14
25
36
47
5
16
27
38
49
7
18
29
34
45
3
14
25
36
47
5
16
27
38
12
23
34
45
3
14
25
36
1
12
23
34
45
32
43

Expanded

5
14
7
16
25
34
43
0
9
18
27
36
45
1
10
2
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
50
6
15
24
33
42
51
7
16
25
34
43
52
8
17
26
35
43
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
2
45
1
10
19
28
37
46
2
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
38
47
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
33
42
51
49
5
14
23
32
41
50
6
15
24
33
42
51
7
16
25
34
43
52
8
17
26
35
44
0
9
18
27
16
25
34
43
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
2
11
20
29
45
1
10
19
28
37
46
2
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
41
50
6
15
24
33
42
51
7
16
25
34
43
52
8
17
26
8
17
26
35
44
0
9
18
27
36
45
1
10
19
37
46
2
11
20
29
38
47
3
12
21
4
13
22
31
40
49
5
14
33
42
51
7
16
0
9

8L 1s

Bryan Deister has demonstrated the 8L 1s mapping in microtonal improvisation in 53edo (2025). The generator is 5\53, 14/13 ~ 13/12. The range is about three and a half octaves (sloping upwards), but in the demonstration video it appears less due to use of only 1 MIDI channel, which cuts off notes at both the left and right margins.

37
43
42
48
1
7
13
41
47
0
6
12
18
24
30
46
52
5
11
17
23
29
35
41
47
0
45
51
4
10
16
22
28
34
40
46
52
5
11
17
50
3
9
15
21
27
33
39
45
51
4
10
16
22
28
34
40
49
2
8
14
20
26
32
38
44
50
3
9
15
21
27
33
39
45
51
4
1
7
13
19
25
31
37
43
49
2
8
14
20
26
32
38
44
50
3
9
15
21
27
0
6
12
18
24
30
36
42
48
1
7
13
19
25
31
37
43
49
2
8
14
20
26
32
38
44
11
17
23
29
35
41
47
0
6
12
18
24
30
36
42
48
1
7
13
19
25
31
37
43
49
2
8
14
28
34
40
46
52
5
11
17
23
29
35
41
47
0
6
12
18
24
30
36
42
48
1
7
13
19
51
4
10
16
22
28
34
40
46
52
5
11
17
23
29
35
41
47
0
6
12
18
24
15
21
27
33
39
45
51
4
10
16
22
28
34
40
46
52
5
11
17
23
38
44
50
3
9
15
21
27
33
39
45
51
4
10
16
22
28
2
8
14
20
26
32
38
44
50
3
9
15
21
27
25
31
37
43
49
2
8
14
20
26
32
42
48
1
7
13
19
25
31
12
18
24
30
36
29
35


ViewTalkEditLumatone mappings 
50edo51edo52edoLumatone mapping for 53edo54edo55edo56edo