8L 7s: Difference between revisions
Jump to navigation
Jump to search
m Several minor |
mNo edit summary |
||
Line 2: | Line 2: | ||
{{MOS intro}} | {{MOS intro}} | ||
This scale is the chromatic scale of [[ | This scale is the chromatic scale of [[opossum]] temperament, where the [[tetrad]] 1/1-[[6/5]]-[[10/7]]-[[12/7]] (0¢-316¢-617¢-933¢) can be formed by by stacking the [[dark]] generator 2, 4, and 6 times above the root. 8L 7s approximates this tetrad from 0¢-300¢-600¢-900¢ to 0¢-320¢-640¢-960¢. | ||
== Modes == | == Modes == |
Revision as of 02:06, 16 December 2024
↖ 7L 6s | ↑ 8L 6s | 9L 6s ↗ |
← 7L 7s | 8L 7s | 9L 7s → |
↙ 7L 8s | ↓ 8L 8s | 9L 8s ↘ |
┌╥╥┬╥┬╥┬╥┬╥┬╥┬╥┬┐ │║║│║│║│║│║│║│║││ │││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLsLsLsLsLsLsLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
8L 7s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 7 small steps, repeating every octave. 8L 7s is a child scale of 7L 1s, expanding it by 7 tones. Generators that produce this scale range from 1040 ¢ to 1050 ¢, or from 150 ¢ to 160 ¢.
This scale is the chromatic scale of opossum temperament, where the tetrad 1/1-6/5-10/7-12/7 (0¢-316¢-617¢-933¢) can be formed by by stacking the dark generator 2, 4, and 6 times above the root. 8L 7s approximates this tetrad from 0¢-300¢-600¢-900¢ to 0¢-320¢-640¢-960¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
14|0 | 1 | LLsLsLsLsLsLsLs |
13|1 | 14 | LsLLsLsLsLsLsLs |
12|2 | 12 | LsLsLLsLsLsLsLs |
11|3 | 10 | LsLsLsLLsLsLsLs |
10|4 | 8 | LsLsLsLsLLsLsLs |
9|5 | 6 | LsLsLsLsLsLLsLs |
8|6 | 4 | LsLsLsLsLsLsLLs |
7|7 | 2 | LsLsLsLsLsLsLsL |
6|8 | 15 | sLLsLsLsLsLsLsL |
5|9 | 13 | sLsLLsLsLsLsLsL |
4|10 | 11 | sLsLsLLsLsLsLsL |
3|11 | 9 | sLsLsLsLLsLsLsL |
2|12 | 7 | sLsLsLsLsLLsLsL |
1|13 | 5 | sLsLsLsLsLsLLsL |
0|14 | 3 | sLsLsLsLsLsLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 80.0 ¢ |
Major 1-mosstep | M1ms | L | 80.0 ¢ to 150.0 ¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 150.0 ¢ to 160.0 ¢ |
Augmented 2-mosstep | A2ms | 2L | 160.0 ¢ to 300.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 150.0 ¢ to 240.0 ¢ |
Major 3-mosstep | M3ms | 2L + s | 240.0 ¢ to 300.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 300.0 ¢ to 320.0 ¢ |
Major 4-mosstep | M4ms | 3L + s | 320.0 ¢ to 450.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 300.0 ¢ to 400.0 ¢ |
Major 5-mosstep | M5ms | 3L + 2s | 400.0 ¢ to 450.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 450.0 ¢ to 480.0 ¢ |
Major 6-mosstep | M6ms | 4L + 2s | 480.0 ¢ to 600.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 450.0 ¢ to 560.0 ¢ |
Major 7-mosstep | M7ms | 4L + 3s | 560.0 ¢ to 600.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 600.0 ¢ to 640.0 ¢ |
Major 8-mosstep | M8ms | 5L + 3s | 640.0 ¢ to 750.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 4L + 5s | 600.0 ¢ to 720.0 ¢ |
Major 9-mosstep | M9ms | 5L + 4s | 720.0 ¢ to 750.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 5L + 5s | 750.0 ¢ to 800.0 ¢ |
Major 10-mosstep | M10ms | 6L + 4s | 800.0 ¢ to 900.0 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 5L + 6s | 750.0 ¢ to 880.0 ¢ |
Major 11-mosstep | M11ms | 6L + 5s | 880.0 ¢ to 900.0 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 6L + 6s | 900.0 ¢ to 960.0 ¢ |
Major 12-mosstep | M12ms | 7L + 5s | 960.0 ¢ to 1050.0 ¢ | |
13-mosstep | Diminished 13-mosstep | d13ms | 6L + 7s | 900.0 ¢ to 1040.0 ¢ |
Perfect 13-mosstep | P13ms | 7L + 6s | 1040.0 ¢ to 1050.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 7L + 7s | 1050.0 ¢ to 1120.0 ¢ |
Major 14-mosstep | M14ms | 8L + 6s | 1120.0 ¢ to 1200.0 ¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 8L + 7s | 1200.0 ¢ |
Scale tree
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |