317edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
m +categories
Review
Line 3: Line 3:


== Theory ==
== Theory ==
317et is only consistent to the [[5-odd-limit]] and the [[harmonic]] 3 is about halfway its steps. Using the patent val, it tempers out 589824/588245, [[16875/16807]], [[65625/65536]] and 49009212/48828125 in the 7-limit; 1835008/1830125, 14700/14641, 2097152/2096325, [[4000/3993]], 2734375/2725888, 1953125/1951488, 172032/171875, [[441/440]], 5767168/5764801, 825000/823543, 537109375/536870912, 134775333/134217728, 160083/160000, 16808715/16777216, 539055/537824 and 3294225/3294172 in the 11-limit.
317edo is only [[consistent]] to the [[5-odd-limit]] and [[harmonic]] [[3/1|3]] is about halfway its steps. To start with, it can be considered in the 2.9.5.7 [[subgroup]], in which it is strong, [[tempering out]] [[420175/419904]], [[703125/702464]], and [[33554432/33480783]].  


===Odd harmonics===
Using the [[patent val]] nonetheless, the equal temperament tempers out 78732/78125 ([[sensipent comma]] in the 5-limit; [[16875/16807]], [[65625/65536]], 589824/588245, and 49009212/48828125 in the 7-limit. In the 11-limit, the 317e [[val]] tempers out [[540/539]], 1375/1372, and [[3025/3024]], whereas the patent val tempers out [[441/440]], [[4000/3993]], and 14700/14641.
 
=== Odd harmonics ===
{{Harmonics in equal|317}}
{{Harmonics in equal|317}}


===Subsets and supersets===
=== Subsets and supersets ===
317edo is the 66th [[prime edo]]. [[634edo]], which doubles it, gives a good correction to the harmonic 3.
317edo is the 66th [[prime edo]]. [[634edo]], which doubles it, gives a good correction to the harmonic 3.


==Regular temperament properties==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
! colspan="2" | Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.9
| 2.9
|{{monzo|1005 -317}}
| {{monzo| 1005 -317 }}
|{{mapping|317 1005}}
| {{mapping| 317 1005 }}
| -0.0799
| -0.0799
| 0.0799
| 0.0799
| 2.11
| 2.11
|-
|-
|2.9.5
| 2.9.5
|{{monzo|-53 5 16}}, {{monzo|33 -17 9}}
| {{monzo| -53 5 16 }}, {{monzo| 33 -17 9 }}
|{{mapping|317 1005 736}}
| {{mapping| 317 1005 736 }}
| -0.0254
| -0.0254
| 0.1009
| 0.1009
| 2.67
| 2.67
|-
|-
|2.9.5.7
| 2.9.5.7
|420175/419904, 703125/702464, 33554432/33480783
| 420175/419904, 703125/702464, 33554432/33480783
|{{mapping|317 1005 736 890}}
| {{mapping| 317 1005 736 890 }}
| -0.0422
| -0.0422
| 0.0921
| 0.0921
| 2.43
| 2.43
|-
|-
|2.9.5.7.11
| 2.9.5.7.11
|6250/6237, 12005/11979, 46656/46585, 151263/151250
| 6250/6237, 12005/11979, 46656/46585, 151263/151250
|{{mapping|317 1005 736 890 1097}}
| {{mapping| 317 1005 736 890 1097 }}
| -0.1126
| -0.1126
| 0.1631
| 0.1631
| 4.31
| 4.31
|-
|-
|2.9.5.7.11.13
| 2.9.5.7.11.13
|1575/1573, 4459/4455, 6250/6237, 67392/67375, 190125/189728
| 1575/1573, 4459/4455, 6250/6237, 67392/67375, 190125/189728
|{{mapping|317 1005 736 890 1097 1173}}
| {{mapping| 317 1005 736 890 1097 1173 }}
| -0.0871
| -0.0871
| 0.1594
| 0.1594
| 4.21
| 4.21
|-
|-
|2.9.5.7.11.13.17
| 2.9.5.7.11.13.17
|936/935, 1225/1224, 1575/1573, 12376/12375, 17920/17901, 34000/33957
| 936/935, 1225/1224, 1575/1573, 12376/12375, 17920/17901, 34000/33957
|{{mapping|317 1005 736 890 1097 1173 1296}}
| {{mapping| 317 1005 736 890 1097 1173 1296 }}
| -0.1109
| -0.1109
| 0.1587
| 0.1587
Line 67: Line 69:
== Music ==
== Music ==
; [[Francium]]
; [[Francium]]
* "Narrator Of Myths" from ''Mysteries'' (2023) [https://open.spotify.com/track/6AYSSw1kVKDDzWVYMyxafv Spotify] | [https://francium223.bandcamp.com/track/narrator-of-myths Bandcamp] | [https://www.youtube.com/watch?v=fNmEjgVonHk YouTube]
* "Narrator Of Myths" from ''Mysteries'' (2023) [https://open.spotify.com/track/6AYSSw1kVKDDzWVYMyxafv Spotify] | [https://francium223.bandcamp.com/track/narrator-of-myths Bandcamp] | [https://www.youtube.com/watch?v=fNmEjgVonHk YouTube]


[[Category:Listen]]
[[Category:Listen]]

Revision as of 10:28, 21 February 2024

← 316edo 317edo 318edo →
Prime factorization 317 (prime)
Step size 3.78549 ¢ 
Fifth 185\317 (700.315 ¢)
Semitones (A1:m2) 27:26 (102.2 ¢ : 98.42 ¢)
Dual sharp fifth 186\317 (704.101 ¢)
Dual flat fifth 185\317 (700.315 ¢)
Dual major 2nd 54\317 (204.416 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

317edo is only consistent to the 5-odd-limit and harmonic 3 is about halfway its steps. To start with, it can be considered in the 2.9.5.7 subgroup, in which it is strong, tempering out 420175/419904, 703125/702464, and 33554432/33480783.

Using the patent val nonetheless, the equal temperament tempers out 78732/78125 (sensipent comma in the 5-limit; 16875/16807, 65625/65536, 589824/588245, and 49009212/48828125 in the 7-limit. In the 11-limit, the 317e val tempers out 540/539, 1375/1372, and 3025/3024, whereas the patent val tempers out 441/440, 4000/3993, and 14700/14641.

Odd harmonics

Approximation of odd harmonics in 317edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -1.64 -0.19 +0.26 +0.51 +1.36 -0.15 -1.83 +1.04 +1.54 -1.38 +0.12
Relative (%) -43.3 -5.1 +6.8 +13.4 +36.0 -3.9 -48.4 +27.4 +40.7 -36.5 +3.1
Steps
(reduced)
502
(185)
736
(102)
890
(256)
1005
(54)
1097
(146)
1173
(222)
1238
(287)
1296
(28)
1347
(79)
1392
(124)
1434
(166)

Subsets and supersets

317edo is the 66th prime edo. 634edo, which doubles it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [1005 -317 [317 1005]] -0.0799 0.0799 2.11
2.9.5 [-53 5 16, [33 -17 9 [317 1005 736]] -0.0254 0.1009 2.67
2.9.5.7 420175/419904, 703125/702464, 33554432/33480783 [317 1005 736 890]] -0.0422 0.0921 2.43
2.9.5.7.11 6250/6237, 12005/11979, 46656/46585, 151263/151250 [317 1005 736 890 1097]] -0.1126 0.1631 4.31
2.9.5.7.11.13 1575/1573, 4459/4455, 6250/6237, 67392/67375, 190125/189728 [317 1005 736 890 1097 1173]] -0.0871 0.1594 4.21
2.9.5.7.11.13.17 936/935, 1225/1224, 1575/1573, 12376/12375, 17920/17901, 34000/33957 [317 1005 736 890 1097 1173 1296]] -0.1109 0.1587 4.19

Music

Francium