59edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
m Infobox ET added
Francium (talk | contribs)
Linking EDOs to their respective pages
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''59EDT''' is the [[Edt|equal division of the third harmonic]] into 59 parts of 32.2365 [[cent|cents]] each, corresponding to 37.2249 [[edo]]. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by 335, 1489, 1824, 2159, 2494, 2829, and 3164 EDOs.
'''59EDT''' is the [[Edt|equal division of the third harmonic]] into 59 parts of 32.2365 [[cent|cents]] each, corresponding to 37.2249 [[edo]]. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by [[335edo|335]], [[1489edo|1489]], [[1824edo|1824]], [[2159edo|2159]], [[2494edo|2494]], [[2829edo|2829]], and [[3164edo|3164]] EDOs.


=Related regular temperaments=
=Related regular temperaments=
Line 11: Line 11:
Map: [<1 0 2|, <0 59 12|]
Map: [<1 0 2|, <0 59 12|]


EDOs: 37, 149, 186, 335, 484, 521
EDOs: {{EDOs|37, 149, 186, 335, 484, 521}}


===7-limit 149&186===
===7-limit 149&186===
Line 20: Line 20:
Map: [<1 0 2 2|, <0 59 12 30|]
Map: [<1 0 2 2|, <0 59 12 30|]


EDOs: 37, 149, 186, 335
EDOs: {{EDOs|37, 149, 186, 335}}


===7-limit 149d&186===
===7-limit 149d&186===
Line 29: Line 29:
Map: [<1 0 2 7|, <0 59 12 -156|]
Map: [<1 0 2 7|, <0 59 12 -156|]


EDOs: 149d, 186, 335d, 521, 707
EDOs: {{EDOs|149d, 186, 335d, 521, 707}}


===7-limit 149&186d===
===7-limit 149&186d===
Line 38: Line 38:
Map: [<1 0 2 -2|, <0 59 12 179|]
Map: [<1 0 2 -2|, <0 59 12 179|]


EDOs: 149, 186d, 335d, 484, 633
EDOs: {{EDOs|149, 186d, 335d, 484, 633}}


==335&2159 temperament==
==335&2159 temperament==
Line 48: Line 48:
Map: [<1 0 -7|, <0 59 347|]
Map: [<1 0 -7|, <0 59 347|]


EDOs: 335, 1489, 1824, 2159, 2494, 2829, 3164
EDOs: {{EDOs|335, 1489, 1824, 2159, 2494, 2829, 3164}}


[[Category:Edt]]
[[Category:Edt]]
[[Category:Edonoi]]
[[Category:Edonoi]]

Revision as of 22:27, 6 May 2023

← 58edt 59edt 60edt →
Prime factorization 59 (prime)
Step size 32.2365 ¢ 
Octave 37\59edt (1192.75 ¢)
Consistency limit 6
Distinct consistency limit 6

59EDT is the equal division of the third harmonic into 59 parts of 32.2365 cents each, corresponding to 37.2249 edo. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by 335, 1489, 1824, 2159, 2494, 2829, and 3164 EDOs.

Related regular temperaments

149&186 temperament

5-limit

Comma: |118 12 -59>

POTE generator: ~3125/3072 = 32.2390

Map: [<1 0 2|, <0 59 12|]

EDOs: 37, 149, 186, 335, 484, 521

7-limit 149&186

Commas: 3136/3125, 49433168575/48922361856

POTE generator: ~49/48 = 32.2368

Map: [<1 0 2 2|, <0 59 12 30|]

EDOs: 37, 149, 186, 335

7-limit 149d&186

Commas: 1280000000/1275989841, 8589934592/8544921875

POTE generator: ~3125/3072 = 32.2456

Map: [<1 0 2 7|, <0 59 12 -156|]

EDOs: 149d, 186, 335d, 521, 707

7-limit 149&186d

Commas: 29360128/29296875, 1937102445/1927561216

POTE generator: ~3125/3072 = 32.2308

Map: [<1 0 2 -2|, <0 59 12 179|]

EDOs: 149, 186d, 335d, 484, 633

335&2159 temperament

5-limit

Comma: |413 -347 59>

POTE generator: ~|-119 100 -17> = 32.2373

Map: [<1 0 -7|, <0 59 347|]

EDOs: 335, 1489, 1824, 2159, 2494, 2829, 3164