328edo: Difference between revisions
Jump to navigation
Jump to search
m Infobox ET now computes most parameters automatically |
Cleanup and update |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|328}} | |||
== Theory == | == Theory == | ||
328edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[164edo]]. It tempers out [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it [[support]]s [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]]. | 328edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[164edo]]. It tempers out [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it [[support]]s [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]]. | ||
328 | === Prime harmonics === | ||
{{Harmonics in equal|328|columns=11}} | |||
=== | === Divisors === | ||
{{ | Since 328 factors into 2<sup>3</sup> × 41, it has subset edos {{EDOs| 2, 4, 8, 41, 82, and 164 }}. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 51: | Line 52: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
Note: 5-limit temperaments supported by 164et are not listed. | |||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per | ! Periods<br>per 8ve | ||
! Generator<br>( | ! Generator<br>(Reduced) | ||
! Cents<br>( | ! Cents<br>(Reduced) | ||
! Associated<br> | ! Associated<br>Ratio | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 93: | Line 96: | ||
| 179.27<br>(3.66) | | 179.27<br>(3.66) | ||
| 567/512<br>(352/351) | | 567/512<br>(352/351) | ||
| [[ | | [[Hemicountercomp]] | ||
|} | |} | ||
Revision as of 13:37, 22 December 2022
← 327edo | 328edo | 329edo → |
Theory
328edo is enfactored in the 5-limit, with the same tuning as 164edo. It tempers out 2401/2400, 3136/3125, and 6144/6125 in the 7-limit, 9801/9800, 16384/16335 and 19712/19683 in the 11-limit, 676/675, 1001/1000, 1716/1715 and 2080/2079 in the 13-limit, 936/935, 1156/1155 and 2601/2600 in the 17-limit, so that it supports würschmidt and hemiwürschmidt, and provides the optimal patent val for 7-limit hemiwürschmidt, 11- and 13-limit semihemiwür, and 13-limit semiporwell.
Prime harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.48 | +1.49 | +0.69 | +0.97 | +1.12 | +0.94 | -1.68 | +1.14 | -1.17 | +1.17 | +0.99 |
Relative (%) | +13.2 | +40.8 | +18.8 | +26.5 | +30.6 | +25.6 | -46.0 | +31.2 | -32.0 | +32.0 | +27.2 | |
Steps (reduced) |
520 (192) |
762 (106) |
921 (265) |
1040 (56) |
1135 (151) |
1214 (230) |
1281 (297) |
1341 (29) |
1393 (81) |
1441 (129) |
1484 (172) |
Divisors
Since 328 factors into 23 × 41, it has subset edos 2, 4, 8, 41, 82, and 164.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7 | 2401/2400, 3136/3125, 589824/588245 | [⟨328 520 762 921]] | -0.298 | 0.229 | 6.27 |
2.3.5.7.11 | 2401/2400, 3136/3125, 9801/9800, 19712/19683 | [⟨328 520 762 921 1135]] | -0.303 | 0.205 | 5.61 |
2.3.5.7.11.13 | 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647 | [⟨328 520 762 921 1135 1214]] | -0.295 | 0.188 | 5.15 |
2.3.5.7.11.13.17 | 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125 | [⟨328 520 762 921 1135 1214 1341]] | -0.293 | 0.174 | 4.77 |
Rank-2 temperaments
Note: 5-limit temperaments supported by 164et are not listed.
Periods per 8ve |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 53\328 | 193.90 | 28/25 | Hemiwürschmidt |
1 | 117\328 | 428.05 | 2800/2187 | Osiris |
2 | 17\328 | 62.20 | 28/27 | Eagle |
2 | 111\328 (53\328) |
406.10 (193.90) |
495/392 (28/25) |
Semihemiwürschmidt |
8 | 136\328 (13\328) |
497.56 (47.56) |
4/3 (36/35) |
Twilight |
41 | 49\328 (1\328) |
179.27 (3.66) |
567/512 (352/351) |
Hemicountercomp |