7L 2s: Difference between revisions
mNo edit summary |
Undo revision 78205 by Moremajorthanmajor (talk) unnecessary Tag: Undo |
||
Line 33: | Line 33: | ||
| | | | | | ||
| | 685.714 | | | 685.714 | ||
| | | | | 1 1 1 0 | ||
| | | | | | ||
|- | |- | ||
Line 40: | Line 40: | ||
| | | | ||
|683.871 | |683.871 | ||
| | |13 13 13 1 | ||
| | | | ||
|- | |- | ||
Line 47: | Line 47: | ||
| | | | | | ||
| | 683.798 | | | 683.798 | ||
| | | | | 25 25 25 2 | ||
| | Approximately 0.03 cents away from [[95/64]] | | | Approximately 0.03 cents away from [[95/64]] | ||
|- | |- | ||
Line 54: | Line 54: | ||
| | | | ||
|683.721 | |683.721 | ||
| | |12 12 12 1 | ||
| | | | ||
|- | |- | ||
Line 61: | Line 61: | ||
| | | | ||
|683.636 | |683.636 | ||
| | |23 23 23 2 | ||
| | | | ||
|- | |- | ||
Line 68: | Line 68: | ||
| | | | ||
|683.544 | |683.544 | ||
| | |11 11 11 1 | ||
| | | | ||
|- | |- | ||
Line 75: | Line 75: | ||
| | | | ||
|683.444 | |683.444 | ||
| | |21 21 21 2 | ||
| | | | ||
|- | |- | ||
Line 82: | Line 82: | ||
| | | | ||
|683.333 | |683.333 | ||
| | |10 10 10 1 | ||
| | | | ||
|- | |- | ||
Line 89: | Line 89: | ||
| | | | ||
|683.212 | |683.212 | ||
| | |19 19 19 2 | ||
| | | | ||
|- | |- | ||
Line 96: | Line 96: | ||
| | | | ||
|683.077 | |683.077 | ||
| | |9 9 9 1 | ||
| | | | ||
|- | |- | ||
Line 103: | Line 103: | ||
| | | | ||
|682.927 | |682.927 | ||
| | |17 17 17 2 | ||
| | | | ||
|- | |- | ||
Line 110: | Line 110: | ||
| | | | | | ||
| | 682.758 | | | 682.758 | ||
| | | | | 8 8 8 1 | ||
| | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones. | | | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones. | ||
|- | |- | ||
Line 117: | Line 117: | ||
| | | | ||
|682.569 | |682.569 | ||
| | |15 15 15 2 | ||
| | | | ||
|- | |- | ||
Line 124: | Line 124: | ||
| | | | ||
|682.353 | |682.353 | ||
| | |7 7 7 1 | ||
| | | | ||
|- | |- | ||
Line 131: | Line 131: | ||
| | | | ||
|682.105 | |682.105 | ||
| | |13 13 13 2 | ||
| | | | ||
|- | |- | ||
Line 138: | Line 138: | ||
| | | | ||
|681.818 | |681.818 | ||
| | |6 6 6 1 | ||
| | | | ||
|- | |- | ||
Line 145: | Line 145: | ||
| | | | ||
|681.4815 | |681.4815 | ||
| | |11 11 11 2 | ||
| | | | ||
|- | |- | ||
Line 152: | Line 152: | ||
| | | | | | ||
| | 681.081 | | | 681.081 | ||
| | | | | 5 5 5 1 | ||
| | | | | | ||
|- | |- | ||
Line 159: | Line 159: | ||
| | | | ||
|680.769 | |680.769 | ||
| | |14 14 14 3 | ||
| | | | ||
|- | |- | ||
Line 166: | Line 166: | ||
| | | | ||
|680.597 | |680.597 | ||
| | |9 9 9 2 | ||
| | | | ||
|- | |- | ||
Line 173: | Line 173: | ||
| | | | ||
|680.412 | |680.412 | ||
| | |13 13 13 3 | ||
| | | | ||
|- | |- | ||
Line 187: | Line 187: | ||
| | | | ||
|679.518 | |679.518 | ||
| | |11 11 11 3 | ||
| | | | ||
|- | |- | ||
Line 194: | Line 194: | ||
| | | | | | ||
| | 679.245 | | | 679.245 | ||
| | | | | 7 7 7 2 | ||
| | | | | | ||
|- | |- | ||
Line 201: | Line 201: | ||
| | | | | | ||
| | 678.947 | | | 678.947 | ||
| | | | | 10 10 10 3 | ||
| | | | | | ||
|- | |- | ||
Line 208: | Line 208: | ||
| | | | | | ||
| | 678.788 | | | 678.788 | ||
| | | | | 13 13 13 4 | ||
| | | | | | ||
|- | |- | ||
Line 215: | Line 215: | ||
| | | | | | ||
| | 678.6885 | | | 678.6885 | ||
| | | | | 16 16 16 5 | ||
| | | | | | ||
|- | |- | ||
Line 222: | Line 222: | ||
| | | | | | ||
| | 678.621 | | | 678.621 | ||
| | | | | 19 19 19 6 | ||
| | | | | | ||
|- | |- | ||
Line 229: | Line 229: | ||
| | | | | | ||
| | 678.571 | | | 678.571 | ||
| | | | | 22 22 22 7 | ||
| | | | | | ||
|- | |- | ||
Line 236: | Line 236: | ||
| | | | | | ||
| | 678.569 | | | 678.569 | ||
| | | | | π π π 1 | ||
| | L/s = π | | | L/s = π | ||
|- | |- | ||
Line 243: | Line 243: | ||
| | | | | | ||
| | 678.534 | | | 678.534 | ||
| | | | | 25 25 25 8 | ||
| | | | | | ||
|- | |- | ||
Line 250: | Line 250: | ||
| | | | | | ||
| | 678.505 | | | 678.505 | ||
| | | | | 28 28 28 9 | ||
| | 28;9 Superdiatonic 1/28-tone <span style="font-size: 12.8000001907349px;">(a slight exceeded representation of the ratio | | | 28;9 Superdiatonic 1/28-tone <span style="font-size: 12.8000001907349px;">(a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth)</span> | ||
|- | |- | ||
| | | | | | ||
Line 257: | Line 257: | ||
| | | | | | ||
| | 678.481 | | | 678.481 | ||
| | | | | 31 31 31 10 | ||
| | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(1/31-tone; Optimum high size of Hornbostel '6th')</span> | | | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(1/31-tone; Optimum high size of Hornbostel '6th')</span> | ||
|- | |- | ||
Line 264: | Line 264: | ||
| | | | | | ||
| | 678.261 | | | 678.261 | ||
| | | | | 3 3 3 1 | ||
| | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/3-tone)</span> | | | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/3-tone)</span> | ||
|- | |- | ||
Line 271: | Line 271: | ||
| | | | | | ||
| | 678.027 | | | 678.027 | ||
| | | | | 29 29 29 10 | ||
| | HORNBOSTEL TEMPERAMENT | | | HORNBOSTEL TEMPERAMENT | ||
Line 280: | Line 280: | ||
| | | | | | ||
| | 678 | | | 678 | ||
| | | | | 26 26 26 9 | ||
| | HORNBOSTEL (& [[Alexei_Stepanovich_Ogolevets|OGOLEVETS]]) TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8')</span> | | | HORNBOSTEL (& [[Alexei_Stepanovich_Ogolevets|OGOLEVETS]]) TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8')</span> | ||
|- | |- | ||
Line 287: | Line 287: | ||
| | | | | | ||
| | 677.966 | | | 677.966 | ||
| | | | | 23 23 23 8 | ||
| | | | | | ||
|- | |- | ||
Line 294: | Line 294: | ||
| | | | | | ||
| | 677.922 | | | 677.922 | ||
| | | | | 20 20 20 7 | ||
| | | | | | ||
|- | |- | ||
Line 301: | Line 301: | ||
| | | | | | ||
| | 677.863 | | | 677.863 | ||
| | | | | 17 17 17 6 | ||
| | Armodue-Hornbostel 1/17-tone <span style="font-size: 12.8000001907349px;">(the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments)</span> | | | Armodue-Hornbostel 1/17-tone <span style="font-size: 12.8000001907349px;">(the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments)</span> | ||
|- | |- | ||
Line 308: | Line 308: | ||
| | | | | | ||
| | 677.778 | | | 677.778 | ||
| | | | | 14 14 14 5 | ||
| | Armodue-Hornbostel 1/14-tone | | | Armodue-Hornbostel 1/14-tone | ||
|- | |- | ||
Line 315: | Line 315: | ||
| | 109\193 | | | 109\193 | ||
| | 677.720 | | | 677.720 | ||
| | | | | 25 25 25 9 | ||
| | Armodue-Hornbostel 1/25-tone | | | Armodue-Hornbostel 1/25-tone | ||
|- | |- | ||
Line 322: | Line 322: | ||
| | | | | | ||
| | 677.647 | | | 677.647 | ||
| | | | | 11 11 11 4 | ||
| | Armodue-Hornbostel 1/11-tone <span style="font-size: 12.8000001907349px;">(Optimum accuracy of Phi interval, the note '7')</span> | | | Armodue-Hornbostel 1/11-tone <span style="font-size: 12.8000001907349px;">(Optimum accuracy of Phi interval, the note '7')</span> | ||
|- | |- | ||
Line 329: | Line 329: | ||
| | | | | | ||
| | 677.562 | | | 677.562 | ||
| | | | | e e e 1 | ||
| | L/s = e | | | L/s = e | ||
|- | |- | ||
Line 336: | Line 336: | ||
| | | | | | ||
| | 677.419 | | | 677.419 | ||
| | | | | 8 8 8 3 | ||
| | Armodue-Hornbostel 1/8-tone | | | Armodue-Hornbostel 1/8-tone | ||
|- | |- | ||
Line 343: | Line 343: | ||
| | 92\163 | | | 92\163 | ||
| | 677.301 | | | 677.301 | ||
| | | | | 21 21 21 8 | ||
| | 21;8 Superdiatonic 1/21-tone | | | 21;8 Superdiatonic 1/21-tone | ||
|- | |- | ||
Line 350: | Line 350: | ||
| | | | | | ||
| | 677.28 | | | 677.28 | ||
| |<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;" | | | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ+1 φ+1 φ+1 1</span> | ||
| | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | | | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | ||
|- | |- | ||
Line 357: | Line 357: | ||
| | | | | | ||
| | 677.228 | | | 677.228 | ||
| | | | | 13 13 13 5 | ||
| | 13;5 Superdiatonic 1/13-tone | | | 13;5 Superdiatonic 1/13-tone | ||
|- | |- | ||
Line 364: | Line 364: | ||
| | | | | | ||
| | 676.923 | | | 676.923 | ||
| | | | | 5 5 5 2 | ||
| | Armodue-Hornbostel 1/5-tone <span style="font-size: 12.8000001907349px;">(Optimum low size of Hornbostel '6th')</span> | | | Armodue-Hornbostel 1/5-tone <span style="font-size: 12.8000001907349px;">(Optimum low size of Hornbostel '6th')</span> | ||
|- | |- | ||
Line 371: | Line 371: | ||
| | | | | | ||
| | 676.692 | | | 676.692 | ||
| | | | | 17 17 17 7 | ||
| | 17;7 Superdiatonic 1/17-tone <span style="font-size: 12.8000001907349px;">(Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents)</span> | | | 17;7 Superdiatonic 1/17-tone <span style="font-size: 12.8000001907349px;">(Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents)</span> | ||
|- | |- | ||
Line 378: | Line 378: | ||
| | | | | | ||
| | 676.596 | | | 676.596 | ||
| | | | | 12 12 12 5 | ||
| | | | | | ||
|- | |- | ||
Line 385: | Line 385: | ||
| | | | | | ||
| | 676.364 | | | 676.364 | ||
| | | | | 7 7 7 3 | ||
| | 7;3 Superdiatonic 1/7-tone | | | 7;3 Superdiatonic 1/7-tone | ||
|- | |- | ||
Line 392: | Line 392: | ||
| | | | | | ||
| | 676.056 | | | 676.056 | ||
| | | | | 9 9 9 4 | ||
| | 9;4 Superdiatonic 1/9-tone | | | 9;4 Superdiatonic 1/9-tone | ||
|- | |- | ||
Line 399: | Line 399: | ||
| | | | | | ||
| | 675.862 | | | 675.862 | ||
| | | | | 11 11 11 5 | ||
| | 11;5 Superdiatonic 1/11-tone | | | 11;5 Superdiatonic 1/11-tone | ||
|- | |- | ||
Line 406: | Line 406: | ||
| | | | | | ||
| | 675.728 | | | 675.728 | ||
| | | | | 13 13 13 6 | ||
| | 13;6 Superdiatonic 1/13-tone | | | 13;6 Superdiatonic 1/13-tone | ||
|- | |- | ||
Line 413: | Line 413: | ||
| | | | | | ||
| | 675 | | | 675 | ||
| | | | | 2 2 2 1 | ||
| | <span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span>ARMODUE ESADECAFONIA (or Goldsmith Temperament) | | | <span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span>ARMODUE ESADECAFONIA (or Goldsmith Temperament) | ||
|- | |- | ||
Line 420: | Line 420: | ||
| | | | | | ||
| | 674.286 | | | 674.286 | ||
| | | | | 13 13 13 7 | ||
| | Armodue-Mavila 1/13-tone | | | Armodue-Mavila 1/13-tone | ||
|- | |- | ||
Line 427: | Line 427: | ||
| | | | | | ||
| | 674.157 | | | 674.157 | ||
| | | | | 11 11 11 6 | ||
| | Armodue-Mavila 1/11-tone | | | Armodue-Mavila 1/11-tone | ||
|- | |- | ||
Line 434: | Line 434: | ||
| | | | | | ||
| | 673.973 | | | 673.973 | ||
| | | | | 9 9 9 5 | ||
| | Armodue-Mavila 1/9-tone <span style="font-size: 12.8000001907349px;">(with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)</span> | | | Armodue-Mavila 1/9-tone <span style="font-size: 12.8000001907349px;">(with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)</span> | ||
|- | |- | ||
Line 441: | Line 441: | ||
| | | | | | ||
| | 673.684 | | | 673.684 | ||
| | | | | 7 7 7 4 | ||
| | Armodue-Mavila 1/7-tone <span style="font-size: 12.8000001907349px;">(the 'Commatic' version of Armodue, because its high accuracy of the [[7/4|7/4]] interval, the note '8')</span> | | | Armodue-Mavila 1/7-tone <span style="font-size: 12.8000001907349px;">(the 'Commatic' version of Armodue, because its high accuracy of the [[7/4|7/4]] interval, the note '8')</span> | ||
|- | |- | ||
Line 448: | Line 448: | ||
| | | | | | ||
| | 673.577 | | | 673.577 | ||
| |<span style="background-color: #ffffff;" | | | <span style="background-color: #ffffff;">√3 √3 √3 1</span> | ||
| | | | | | ||
|- | |- | ||
Line 455: | Line 455: | ||
| | | | | | ||
| | 673.469 | | | 673.469 | ||
| | | | | 12 12 12 7 | ||
| | | | | | ||
|- | |- | ||
Line 462: | Line 462: | ||
| | | | | | ||
| | 673.381 | | | 673.381 | ||
| | | | | 17 17 17 10 | ||
| | Armodue-Mavila 1/17-tone | | | Armodue-Mavila 1/17-tone | ||
|- | |- | ||
Line 469: | Line 469: | ||
| | | | | | ||
| | 673.333 | | | 673.333 | ||
| | | | | 22 22 22 13 | ||
| | | | | | ||
|- | |- | ||
Line 476: | Line 476: | ||
| | | | | | ||
| | 673.171 | | | 673.171 | ||
| | | | | 5 5 5 3 | ||
| | 5;3 Golden Armodue-Mavila 1/5-tone | | | 5;3 Golden Armodue-Mavila 1/5-tone | ||
|- | |- | ||
Line 483: | Line 483: | ||
| | | | | | ||
| | 672.897 | | | 672.897 | ||
| | | | | 13 13 13 8 | ||
| | 13;8 Golden Mavila 1/13-tone | | | 13;8 Golden Mavila 1/13-tone | ||
|- | |- | ||
Line 490: | Line 490: | ||
| | | | | | ||
| | 672.85 | | | 672.85 | ||
| |<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;" | | | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ φ φ 1</span> | ||
| | GOLDEN MAVILA (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span> | | | GOLDEN MAVILA (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span> | ||
|- | |- | ||
Line 497: | Line 497: | ||
| | 97\173 | | | 97\173 | ||
| | 672.832 | | | 672.832 | ||
| | | | | 21 21 21 13 | ||
| | 21;13 Golden Mavila 1/21-tone <span style="font-size: 12.8000001907349px;">(Phi is the step 120\173)</span> | | | 21;13 Golden Mavila 1/21-tone <span style="font-size: 12.8000001907349px;">(Phi is the step 120\173)</span> | ||
|- | |- | ||
Line 504: | Line 504: | ||
| | | | | | ||
| | 672.727 | | | 672.727 | ||
| | | | | 8 8 8 5 | ||
| | 8;5 Golden Mavila 1/8-tone | | | 8;5 Golden Mavila 1/8-tone | ||
|- | |- | ||
Line 511: | Line 511: | ||
| | | | | | ||
| | 672.527 | | | 672.527 | ||
| | | | | 11 11 11 7 | ||
| | 11;7 Superdiatonic 1/11-tone | | | 11;7 Superdiatonic 1/11-tone | ||
|- | |- | ||
Line 518: | Line 518: | ||
| | | | | | ||
| | 672.523 | | | 672.523 | ||
| | | | | π π π 2 | ||
| | | | | | ||
|- | |- | ||
Line 525: | Line 525: | ||
| | 116\207 | | | 116\207 | ||
| | 672.464 | | | 672.464 | ||
| | | | | 25 25 25 16 | ||
| | 25;16 Superdiatonic 1/25-tone | | | 25;16 Superdiatonic 1/25-tone | ||
|- | |- | ||
Line 532: | Line 532: | ||
| | | | | | ||
| | 672.414 | | | 672.414 | ||
| | | | | 14 14 14 9 | ||
| | 14;9 Superdiatonic 1/14-tone | | | 14;9 Superdiatonic 1/14-tone | ||
|- | |- | ||
Line 539: | Line 539: | ||
| | | | | | ||
| | 672.340 | | | 672.340 | ||
| | | | | 17 17 17 11 | ||
| | 17;11 Superdiatonic 1/17-tone | | | 17;11 Superdiatonic 1/17-tone | ||
|- | |- | ||
Line 546: | Line 546: | ||
| | | | | | ||
| | 672.289 | | | 672.289 | ||
| | | | | 20 20 20 13 | ||
| | | | | | ||
|- | |- | ||
Line 553: | Line 553: | ||
| | | | | | ||
| | 672.251 | | | 672.251 | ||
| | | | | 23 23 23 15 | ||
| | | | | | ||
|- | |- | ||
Line 560: | Line 560: | ||
| | | | | | ||
| | 672.222 | | | 672.222 | ||
| | | | | 26 26 26 17 | ||
| | 26;17 Superdiatonic 1/26-tone | | | 26;17 Superdiatonic 1/26-tone | ||
|- | |- | ||
Line 567: | Line 567: | ||
| | | | | | ||
| | 672.199 | | | 672.199 | ||
| | | | | 29 29 29 19 | ||
| | 29;19 Superdiatonic 1/29-tone | | | 29;19 Superdiatonic 1/29-tone | ||
|- | |- | ||
Line 574: | Line 574: | ||
| | | | | | ||
| | 672 | | | 672 | ||
| | | | | 3 3 3 2 | ||
| | 3;2 Golden Armodue-Mavila 1/3-tone | | | 3;2 Golden Armodue-Mavila 1/3-tone | ||
|- | |- | ||
Line 581: | Line 581: | ||
| | | | | | ||
| | 671.815 | | | 671.815 | ||
| | | | | 31 31 31 21 | ||
| | 31;21 Superdiatonic 1/31-tone | | | 31;21 Superdiatonic 1/31-tone | ||
|- | |- | ||
Line 588: | Line 588: | ||
| | | | | | ||
| | 671.795 | | | 671.795 | ||
| | | | | 28 28 28 19 | ||
| | 28;19 Superdiatonic 1/28-tone | | | 28;19 Superdiatonic 1/28-tone | ||
|- | |- | ||
Line 595: | Line 595: | ||
| | | | | | ||
| | 671.770 | | | 671.770 | ||
| | | | | 25 25 25 17 | ||
| | | | | | ||
|- | |- | ||
Line 602: | Line 602: | ||
| | | | | | ||
| | 671.739 | | | 671.739 | ||
| | | | | 22 22 22 15 | ||
| | | | | | ||
|- | |- | ||
Line 609: | Line 609: | ||
| | | | | | ||
| | 671.698 | | | 671.698 | ||
| | | | | 19 19 19 13 | ||
| | | | | | ||
|- | |- | ||
Line 616: | Line 616: | ||
| | | | | | ||
| | 671.642 | | | 671.642 | ||
| | | | | 16 16 16 11 | ||
| | | | | | ||
|- | |- | ||
Line 623: | Line 623: | ||
| | | | | | ||
| | 671.560 | | | 671.560 | ||
| | | | | 13 13 13 9 | ||
| | | | | | ||
|- | |- | ||
Line 630: | Line 630: | ||
| | | | | | ||
| | 671.429 | | | 671.429 | ||
| | | | | 10 10 10 7 | ||
| | | | | | ||
|- | |- | ||
Line 637: | Line 637: | ||
|80\143 | |80\143 | ||
|671.329 | |671.329 | ||
| | |17 17 17 12 | ||
| | | | ||
|- | |- | ||
Line 644: | Line 644: | ||
| | | | | | ||
| | 671.186 | | | 671.186 | ||
| | | | | 7 7 7 5 | ||
| | | | | | ||
|- | |- | ||
Line 651: | Line 651: | ||
| | | | ||
|670.968 | |670.968 | ||
| | |11 11 11 8 | ||
| | | | ||
|- | |- | ||
Line 658: | Line 658: | ||
| | | | | | ||
| | 670.588 | | | 670.588 | ||
| | | | | 4 4 4 3 | ||
| | | | | | ||
|- | |- | ||
Line 665: | Line 665: | ||
| | | | ||
|670.13 | |670.13 | ||
| | |9 9 9 7 | ||
| | | | ||
|- | |- | ||
Line 672: | Line 672: | ||
| | | | | | ||
| | 669.767 | | | 669.767 | ||
| | | | | 5 5 5 4 | ||
| | | | | | ||
|- | |- | ||
Line 679: | Line 679: | ||
| | | | ||
|669.474 | |669.474 | ||
| | |11 11 11 9 | ||
| | | | ||
|- | |- | ||
Line 686: | Line 686: | ||
| | | | ||
|669.231 | |669.231 | ||
| | |6 6 6 5 | ||
| | | | ||
|- | |- | ||
Line 693: | Line 693: | ||
| | | | ||
|669.0265 | |669.0265 | ||
| | |13 13 13 11 | ||
| | | | ||
|- | |- | ||
Line 700: | Line 700: | ||
| | | | ||
|668.8525 | |668.8525 | ||
| | |7 7 7 6 | ||
| | | | ||
|- | |- | ||
Line 707: | Line 707: | ||
| | | | ||
|668.702 | |668.702 | ||
| | |15 15 15 13 | ||
| | | | ||
|- | |- | ||
Line 714: | Line 714: | ||
| | | | ||
|668.571 | |668.571 | ||
| | |8 8 8 7 | ||
| | | | ||
|- | |- | ||
Line 721: | Line 721: | ||
| | | | ||
|668.456 | |668.456 | ||
| | |17 17 17 15 | ||
| | | | ||
|- | |- | ||
Line 728: | Line 728: | ||
| | | | ||
|668.354 | |668.354 | ||
| | |9 9 9 8 | ||
| | | | ||
|- | |- | ||
Line 735: | Line 735: | ||
| | | | ||
|668.2365 | |668.2365 | ||
| | |19 19 19 17 | ||
| | | | ||
|- | |- | ||
Line 742: | Line 742: | ||
| | | | ||
|668.182 | |668.182 | ||
| | |10 10 10 9 | ||
| | | | ||
|- | |- | ||
Line 749: | Line 749: | ||
| | | | ||
|668.108 | |668.108 | ||
| | |21 21 21 9 | ||
| | | | ||
|- | |- | ||
Line 756: | Line 756: | ||
| | | | ||
|668.041 | |668.041 | ||
| | |11 11 11 10 | ||
| | | | ||
|- | |- | ||
Line 763: | Line 763: | ||
| | | | ||
|667.98 | |667.98 | ||
| | |23 23 23 21 | ||
| | | | ||
|- | |- | ||
Line 770: | Line 770: | ||
| | | | ||
|667.925 | |667.925 | ||
| | |12 12 12 11 | ||
| | | | ||
|- | |- | ||
Line 777: | Line 777: | ||
| | | | ||
|667.873 | |667.873 | ||
| | |25 25 25 23 | ||
| | | | ||
|- | |- | ||
Line 784: | Line 784: | ||
| | | | ||
|667.826 | |667.826 | ||
| | |13 13 13 12 | ||
| | | | ||
|- | |- | ||
Line 791: | Line 791: | ||
| | | | | | ||
| | 666.667 | | | 666.667 | ||
| | | | | 1 1 1 1 | ||
| | | | | | ||
|} | |} |
Revision as of 04:13, 16 September 2021
↖ 6L 1s | ↑ 7L 1s | 8L 1s ↗ |
← 6L 2s | 7L 2s | 8L 2s → |
↙ 6L 3s | ↓ 7L 3s | 8L 3s ↘ |
┌╥╥╥╥┬╥╥╥┬┐ │║║║║│║║║││ │││││││││││ └┴┴┴┴┴┴┴┴┴┘
sLLLsLLLL
This page is about of a MOSScale with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).
Name
The name superdiatonic has been established by Armodue theorists, and so TAMNAMS adopts it as well.
Temperaments
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then mavila is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'.
These scales are strongly associated with the Armodue project/system applied to septimal mavila and Hornbostel temperaments.
Intervals
Note: In TAMNAMS, a k-step interval class in superdiatonic may be called a "k-step", "k-mosstep", or "k-armstep". 1-indexed terms such as "mos(k+1)th" are discouraged for non-diatonic mosses.
Scale tree
Optional types of 'JI Blown Fifth' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
Generator | Generator size (cents) | Pentachord steps | Comments | ||
---|---|---|---|---|---|
4\7 | 685.714 | 1 1 1 0 | |||
53\93 | 683.871 | 13 13 13 1 | |||
102\179 | 683.798 | 25 25 25 2 | Approximately 0.03 cents away from 95/64 | ||
49\86 | 683.721 | 12 12 12 1 | |||
94\165 | 683.636 | 23 23 23 2 | |||
45\79 | 683.544 | 11 11 11 1 | |||
86\151 | 683.444 | 21 21 21 2 | |||
41\72 | 683.333 | 10 10 10 1 | |||
78\137 | 683.212 | 19 19 19 2 | |||
37\65 | 683.077 | 9 9 9 1 | |||
70\123 | 682.927 | 17 17 17 2 | |||
33\58 | 682.758 | 8 8 8 1 | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones. | ||
62\109 | 682.569 | 15 15 15 2 | |||
29\51 | 682.353 | 7 7 7 1 | |||
54\95 | 682.105 | 13 13 13 2 | |||
25\44 | 681.818 | 6 6 6 1 | |||
46\81 | 681.4815 | 11 11 11 2 | |||
21\37 | 681.081 | 5 5 5 1 | |||
59\104 | 680.769 | 14 14 14 3 | |||
38\67 | 680.597 | 9 9 9 2 | |||
55\97 | 680.412 | 13 13 13 3 | |||
17\30 | 680 | 4 4 4 1 | L/s = 4 | ||
47\83 | 679.518 | 11 11 11 3 | |||
30\53 | 679.245 | 7 7 7 2 | |||
43\76 | 678.947 | 10 10 10 3 | |||
56\99 | 678.788 | 13 13 13 4 | |||
69\122 | 678.6885 | 16 16 16 5 | |||
82\145 | 678.621 | 19 19 19 6 | |||
95\168 | 678.571 | 22 22 22 7 | |||
678.569 | π π π 1 | L/s = π | |||
108\191 | 678.534 | 25 25 25 8 | |||
121\214 | 678.505 | 28 28 28 9 | 28;9 Superdiatonic 1/28-tone (a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth) | ||
134\237 | 678.481 | 31 31 31 10 | HORNBOSTEL TEMPERAMENT (1/31-tone; Optimum high size of Hornbostel '6th') | ||
13\23 | 678.261 | 3 3 3 1 | HORNBOSTEL TEMPERAMENT (Armodue 1/3-tone) | ||
126\223 | 678.027 | 29 29 29 10 | HORNBOSTEL TEMPERAMENT
(Armodue 1/29-tone) | ||
113\200 | 678 | 26 26 26 9 | HORNBOSTEL (& OGOLEVETS) TEMPERAMENT (Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8') | ||
100\177 | 677.966 | 23 23 23 8 | |||
87\154 | 677.922 | 20 20 20 7 | |||
74\131 | 677.863 | 17 17 17 6 | Armodue-Hornbostel 1/17-tone (the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments) | ||
61\108 | 677.778 | 14 14 14 5 | Armodue-Hornbostel 1/14-tone | ||
109\193 | 677.720 | 25 25 25 9 | Armodue-Hornbostel 1/25-tone | ||
48\85 | 677.647 | 11 11 11 4 | Armodue-Hornbostel 1/11-tone (Optimum accuracy of Phi interval, the note '7') | ||
677.562 | e e e 1 | L/s = e | |||
35\62 | 677.419 | 8 8 8 3 | Armodue-Hornbostel 1/8-tone | ||
92\163 | 677.301 | 21 21 21 8 | 21;8 Superdiatonic 1/21-tone | ||
677.28 | φ+1 φ+1 φ+1 1 | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | |||
57\101 | 677.228 | 13 13 13 5 | 13;5 Superdiatonic 1/13-tone | ||
22\39 | 676.923 | 5 5 5 2 | Armodue-Hornbostel 1/5-tone (Optimum low size of Hornbostel '6th') | ||
75\133 | 676.692 | 17 17 17 7 | 17;7 Superdiatonic 1/17-tone (Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents) | ||
53\94 | 676.596 | 12 12 12 5 | |||
31\55 | 676.364 | 7 7 7 3 | 7;3 Superdiatonic 1/7-tone | ||
40\71 | 676.056 | 9 9 9 4 | 9;4 Superdiatonic 1/9-tone | ||
49\87 | 675.862 | 11 11 11 5 | 11;5 Superdiatonic 1/11-tone | ||
58\103 | 675.728 | 13 13 13 6 | 13;6 Superdiatonic 1/13-tone | ||
9\16 | 675 | 2 2 2 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper]ARMODUE ESADECAFONIA (or Goldsmith Temperament) | ||
59\105 | 674.286 | 13 13 13 7 | Armodue-Mavila 1/13-tone | ||
50\89 | 674.157 | 11 11 11 6 | Armodue-Mavila 1/11-tone | ||
41\73 | 673.973 | 9 9 9 5 | Armodue-Mavila 1/9-tone (with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents) | ||
32\57 | 673.684 | 7 7 7 4 | Armodue-Mavila 1/7-tone (the 'Commatic' version of Armodue, because its high accuracy of the 7/4 interval, the note '8') | ||
673.577 | √3 √3 √3 1 | ||||
55\98 | 673.469 | 12 12 12 7 | |||
78\139 | 673.381 | 17 17 17 10 | Armodue-Mavila 1/17-tone | ||
101\180 | 673.333 | 22 22 22 13 | |||
23\41 | 673.171 | 5 5 5 3 | 5;3 Golden Armodue-Mavila 1/5-tone | ||
60\107 | 672.897 | 13 13 13 8 | 13;8 Golden Mavila 1/13-tone | ||
672.85 | φ φ φ 1 | GOLDEN MAVILA (L/s = φ) | |||
97\173 | 672.832 | 21 21 21 13 | 21;13 Golden Mavila 1/21-tone (Phi is the step 120\173) | ||
37\66 | 672.727 | 8 8 8 5 | 8;5 Golden Mavila 1/8-tone | ||
51\91 | 672.527 | 11 11 11 7 | 11;7 Superdiatonic 1/11-tone | ||
672.523 | π π π 2 | ||||
116\207 | 672.464 | 25 25 25 16 | 25;16 Superdiatonic 1/25-tone | ||
65\116 | 672.414 | 14 14 14 9 | 14;9 Superdiatonic 1/14-tone | ||
79\141 | 672.340 | 17 17 17 11 | 17;11 Superdiatonic 1/17-tone | ||
93\166 | 672.289 | 20 20 20 13 | |||
107\191 | 672.251 | 23 23 23 15 | |||
121\216 | 672.222 | 26 26 26 17 | 26;17 Superdiatonic 1/26-tone | ||
135\241 | 672.199 | 29 29 29 19 | 29;19 Superdiatonic 1/29-tone | ||
14\25 | 672 | 3 3 3 2 | 3;2 Golden Armodue-Mavila 1/3-tone | ||
145\259 | 671.815 | 31 31 31 21 | 31;21 Superdiatonic 1/31-tone | ||
131\234 | 671.795 | 28 28 28 19 | 28;19 Superdiatonic 1/28-tone | ||
117\209 | 671.770 | 25 25 25 17 | |||
103\184 | 671.739 | 22 22 22 15 | |||
89\159 | 671.698 | 19 19 19 13 | |||
75\134 | 671.642 | 16 16 16 11 | |||
61\109 | 671.560 | 13 13 13 9 | |||
47\84 | 671.429 | 10 10 10 7 | |||
80\143 | 671.329 | 17 17 17 12 | |||
33\59 | 671.186 | 7 7 7 5 | |||
52\93 | 670.968 | 11 11 11 8 | |||
19\34 | 670.588 | 4 4 4 3 | |||
43\77 | 670.13 | 9 9 9 7 | |||
24\43 | 669.767 | 5 5 5 4 | |||
53\95 | 669.474 | 11 11 11 9 | |||
29\52 | 669.231 | 6 6 6 5 | |||
63\113 | 669.0265 | 13 13 13 11 | |||
34\61 | 668.8525 | 7 7 7 6 | |||
73\131 | 668.702 | 15 15 15 13 | |||
39\70 | 668.571 | 8 8 8 7 | |||
83\149 | 668.456 | 17 17 17 15 | |||
44\79 | 668.354 | 9 9 9 8 | |||
93\167 | 668.2365 | 19 19 19 17 | |||
49\88 | 668.182 | 10 10 10 9 | |||
103\185 | 668.108 | 21 21 21 9 | |||
54\97 | 668.041 | 11 11 11 10 | |||
113\203 | 667.98 | 23 23 23 21 | |||
59\106 | 667.925 | 12 12 12 11 | |||
123\221 | 667.873 | 25 25 25 23 | |||
64\115 | 667.826 | 13 13 13 12 | |||
5\9 | 666.667 | 1 1 1 1 |