18edf: Difference between revisions
Cleanup (1/) |
Cleanup (2/2) |
||
Line 10: | Line 10: | ||
== Intervals == | == Intervals == | ||
{| class="wikitable mw-collapsible" | {| class="wikitable center-1 right-2 mw-collapsible" | ||
|- | |- | ||
! | ! # | ||
! Cents | ! Cents | ||
! | ! Approximate ratios | ||
! Comments | ! Comments | ||
|- | |- | ||
| 0 | |||
| | | 0.0 | ||
| [[1/1]] | |||
|- | |- | ||
| 1 | | 1 | ||
| | | 39.0 | ||
| | | [[33/32]], [[36/35]], [[49/48]], [[50/49]], [[64/63]] | ||
|- | |- | ||
| 2 | | 2 | ||
| | | 78.0 | ||
| [[21/20]], [[22/21]], [[25/24]], [[28/27]] | |||
| | |||
|- | |- | ||
| 3 | | 3 | ||
| | | 117.0 | ||
| 16/15 | | [[15/14]], [[16/15]] | ||
|- | |- | ||
| 4 | | 4 | ||
| | | 156.0 | ||
| | | [[11/10]], [[12/11]] | ||
|- | |- | ||
| 5 | | 5 | ||
| | | 195.0 | ||
| | | [[9/8]], [[10/9]] | ||
|- | |- | ||
| 6 | | 6 | ||
| | | 234.0 | ||
| 8/7 | | [[8/7]] | ||
|- | |- | ||
| 7 | | 7 | ||
| | | 273.0 | ||
| 7/6 | | [[7/6]] | ||
|- | |- | ||
| 8 | | 8 | ||
| | | 312.0 | ||
| 6/5 | | [[6/5]] | ||
|- | |- | ||
| 9 | | 9 | ||
| | | 351.0 | ||
| | | [[11/9]], [[16/13]] | ||
|- | |- | ||
| 10 | | 10 | ||
| | | 390.0 | ||
| 5/4 | | [[5/4]] | ||
|- | |- | ||
| 11 | | 11 | ||
| | | 429.0 | ||
| 9/7 | | [[9/7]], [[14/11]] | ||
|- | |- | ||
| 12 | | 12 | ||
| | | 468.0 | ||
| [[13/10]], [[21/16]] | |||
| | |||
|- | |- | ||
| 13 | | 13 | ||
| | | 507.0 | ||
| | | [[4/3]] | ||
|- | |- | ||
| 14 | | 14 | ||
| | | 546.0 | ||
| [[11/8]], [[15/11]] | |||
| | |||
|- | |- | ||
| 15 | | 15 | ||
| | | 585.0 | ||
| [[7/5]] | |||
| | |||
|- | |- | ||
| 16 | | 16 | ||
| | | 624.0 | ||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 17 | | 17 | ||
| | | 663.0 | ||
| [[22/15]] | | [[16/11]], [[22/15]] | ||
|- | |- | ||
| 18 | | 18 | ||
| | | 702.0 | ||
| | | [[3/2]] | ||
|- | |- | ||
| 19 | | 19 | ||
| | | 741.0 | ||
| | | [[20/13]], [[32/21]] | ||
|- | |- | ||
| 20 | | 20 | ||
| | | 780.0 | ||
| [[11/7]], [[14/9]] | |||
| | |||
|- | |- | ||
| 21 | | 21 | ||
| 818. | | 818.9 | ||
| 8/5 | | [[8/5]] | ||
|- | |- | ||
| 22 | | 22 | ||
| 857. | | 857.9 | ||
| | | [[18/11]] | ||
|- | |- | ||
| 23 | | 23 | ||
| 896. | | 896.9 | ||
| | | [[5/3]] | ||
|- | |- | ||
| 24 | | 24 | ||
| 935. | | 935.9 | ||
| 12/7 | | [[12/7]] | ||
|- | |- | ||
| 25 | | 25 | ||
| 974. | | 974.9 | ||
| 7/4 | | [[7/4]] | ||
|- | |- | ||
| 26 | | 26 | ||
| 1013. | | 1013.9 | ||
| 9/5 | | [[9/5]] | ||
|- | |- | ||
| 27 | | 27 | ||
| 1052. | | 1052.9 | ||
| | | [[11/6]] | ||
|- | |- | ||
| 28 | | 28 | ||
| 1091. | | 1091.9 | ||
| 15/8 | | [[15/8]] | ||
|- | |- | ||
| 29 | | 29 | ||
| 1130. | | 1130.9 | ||
| 27/14 | | [[27/14]] | ||
|- | |- | ||
| 30 | | 30 | ||
| 1169. | | 1169.9 | ||
| [[35/18]], [[49/25]], [[63/32]] | |||
| | |||
|- | |- | ||
| 31 | | 31 | ||
| 1208. | | 1208.9 | ||
| | | [[2/1]] | ||
|- | |- | ||
| 32 | | 32 | ||
| 1247. | | 1247.9 | ||
| [[33/16]], [[45/22]], [[49/24]], [[55/27]] | |||
| | |||
|- | |- | ||
| 33 | | 33 | ||
| 1286. | | 1286.9 | ||
| [[21/10]], [[25/12]] | |||
| | |||
|- | |- | ||
| 34 | | 34 | ||
| 1325. | | 1325.9 | ||
| [[15/7]] | |||
| | |||
|- | |- | ||
| 35 | | 35 | ||
| 1364. | | 1364.9 | ||
| [[11/5]] | |||
| | |||
|- | |- | ||
| 36 | | 36 | ||
| 1403. | | 1403.9 | ||
| | | [[9/4]] | ||
|} | |} | ||
Revision as of 12:48, 24 March 2025
← 17edf | 18edf | 19edf → |
18 equal divisions of the perfect fifth (abbreviated 18edf or 18ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 18 equal parts of about 39 ¢ each. Each step represents a frequency ratio of (3/2)1/18, or the 18th root of 3/2.
Theory
18edf is related to the regular temperament which tempers out 2401/2400 and 8589934592/8544921875 in the 7-limit; with 5632/5625, 46656/46585, and 166698/166375 in the 11-limit, which is supported by 31edo, 369edo, 400edo, 431edo, and 462edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.9 | +8.9 | +17.8 | -17.5 | +17.8 | -15.0 | -12.2 | +17.8 | -8.6 | -17.6 | -12.2 |
Relative (%) | +22.9 | +22.9 | +45.8 | -44.9 | +45.8 | -38.6 | -31.4 | +45.8 | -22.0 | -45.1 | -31.4 | |
Steps (reduced) |
31 (13) |
49 (13) |
62 (8) |
71 (17) |
80 (8) |
86 (14) |
92 (2) |
98 (8) |
102 (12) |
106 (16) |
110 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.2 | -6.1 | -8.6 | -3.3 | +8.7 | -12.2 | +11.2 | +0.4 | -6.1 | -8.7 | -7.6 | -3.3 |
Relative (%) | +13.3 | -15.7 | -22.0 | -8.5 | +22.4 | -31.4 | +28.6 | +0.9 | -15.7 | -22.2 | -19.5 | -8.5 | |
Steps (reduced) |
114 (6) |
117 (9) |
120 (12) |
123 (15) |
126 (0) |
128 (2) |
131 (5) |
133 (7) |
135 (9) |
137 (11) |
139 (13) |
141 (15) |
Intervals
# | Cents | Approximate ratios | Comments |
---|---|---|---|
0 | 0.0 | 1/1 | |
1 | 39.0 | 33/32, 36/35, 49/48, 50/49, 64/63 | |
2 | 78.0 | 21/20, 22/21, 25/24, 28/27 | |
3 | 117.0 | 15/14, 16/15 | |
4 | 156.0 | 11/10, 12/11 | |
5 | 195.0 | 9/8, 10/9 | |
6 | 234.0 | 8/7 | |
7 | 273.0 | 7/6 | |
8 | 312.0 | 6/5 | |
9 | 351.0 | 11/9, 16/13 | |
10 | 390.0 | 5/4 | |
11 | 429.0 | 9/7, 14/11 | |
12 | 468.0 | 13/10, 21/16 | |
13 | 507.0 | 4/3 | |
14 | 546.0 | 11/8, 15/11 | |
15 | 585.0 | 7/5 | |
16 | 624.0 | 10/7 | |
17 | 663.0 | 16/11, 22/15 | |
18 | 702.0 | 3/2 | |
19 | 741.0 | 20/13, 32/21 | |
20 | 780.0 | 11/7, 14/9 | |
21 | 818.9 | 8/5 | |
22 | 857.9 | 18/11 | |
23 | 896.9 | 5/3 | |
24 | 935.9 | 12/7 | |
25 | 974.9 | 7/4 | |
26 | 1013.9 | 9/5 | |
27 | 1052.9 | 11/6 | |
28 | 1091.9 | 15/8 | |
29 | 1130.9 | 27/14 | |
30 | 1169.9 | 35/18, 49/25, 63/32 | |
31 | 1208.9 | 2/1 | |
32 | 1247.9 | 33/16, 45/22, 49/24, 55/27 | |
33 | 1286.9 | 21/10, 25/12 | |
34 | 1325.9 | 15/7 | |
35 | 1364.9 | 11/5 | |
36 | 1403.9 | 9/4 |
Related regular temperaments
The rank-two regular temperament supported by 31edo and 369edo has three equal divisions of the interval which equals an octave minus the step interval of 18EDF as a generator.
7-limit 31 & 369
Commas: 2401/2400, 8589934592/8544921875
POTE generator: ~5/4 = 386.997
Mapping: [⟨1 19 2 7], ⟨0 -54 1 -13]]
11-limit 31 & 369
Commas: 2401/2400, 5632/5625, 46656/46585
POTE generator: ~5/4 = 386.999
Mapping: [⟨1 19 2 7 37], ⟨0 -54 1 -13 -104]]
EDOs: 31, 369, 400, 431, 462
13-limit 31 & 369
Commas: 1001/1000, 1716/1715, 4096/4095, 46656/46585
POTE generator: ~5/4 = 387.003
Mapping: [⟨1 19 2 7 37 -35], ⟨0 -54 1 -13 -104 120]]
EDOs: 31, 369, 400, 431, 462
![]() |
Todo: cleanup , expand say what the temperaments are like and why one would want to use them, and for what |