77edo: Difference between revisions
Contribution (talk | contribs) No edit summary |
ArrowHead294 (talk | contribs) m Formatting + ups and downs notation |
||
Line 5: | Line 5: | ||
With [[3/1|harmonic 3]] less than a cent flat, [[5/1|harmonic 5]] a bit over three cents sharp and [[7/1|7]]'s less flat than that, 77edo represents an excellent tuning choice for both [[valentine]], the {{nowrap|31 & 46}} temperament, and [[starling]], the [[126/125]] [[planar temperament]], giving the [[optimal patent val]] for [[11-limit]] valentine and its [[13-limit]] extensions dwynwen and valentino, as well as 11-limit starling and [[oxpecker]] temperaments. It also gives the optimal patent val for [[grackle]] and various members of the [[unicorn family]], with a [[generator]] of 4\77 instead of the 5\77 (which gives valentine). These are 7-limit [[Unicorn family #Alicorn|alicorn]] and 11- and 13-limit [[Unicorn family #Camahueto|camahueto]]. | With [[3/1|harmonic 3]] less than a cent flat, [[5/1|harmonic 5]] a bit over three cents sharp and [[7/1|7]]'s less flat than that, 77edo represents an excellent tuning choice for both [[valentine]], the {{nowrap|31 & 46}} temperament, and [[starling]], the [[126/125]] [[planar temperament]], giving the [[optimal patent val]] for [[11-limit]] valentine and its [[13-limit]] extensions dwynwen and valentino, as well as 11-limit starling and [[oxpecker]] temperaments. It also gives the optimal patent val for [[grackle]] and various members of the [[unicorn family]], with a [[generator]] of 4\77 instead of the 5\77 (which gives valentine). These are 7-limit [[Unicorn family #Alicorn|alicorn]] and 11- and 13-limit [[Unicorn family #Camahueto|camahueto]]. | ||
77et tempers out [[32805/32768]] in the [[5-limit]], [[126/125]], [[1029/1024]] and [[6144/6125]] in the 7-limit, [[121/120]], [[176/175]], [[385/384]] and [[441/440]] in the 11-limit, and [[196/195]], [[351/350]], [[352/351]], [[676/675]] and [[729/728]] in the 13-limit. | 77et tempers out [[32805/32768]] in the [[5-limit]], [[126/125]], [[1029/1024]], and [[6144/6125]] in the 7-limit, [[121/120]], [[176/175]], [[385/384]], and [[441/440]] in the 11-limit, and [[196/195]], [[351/350]], [[352/351]], [[676/675]] and [[729/728]] in the 13-limit. | ||
The [[17/1|17]] and [[19/1|19]] are tuned fairly well, making it [[consistent]] to the no-11 [[21-odd-limit]]. The equal temperament tempers out [[256/255]] in the 17-limit; and [[171/170]], [[361/360]], [[513/512]], and [[1216/1215]] in the 19-limit. | The [[17/1|17]] and [[19/1|19]] are tuned fairly well, making it [[consistent]] to the no-11 [[21-odd-limit]]. The equal temperament tempers out [[256/255]] in the 17-limit; and [[171/170]], [[361/360]], [[513/512]], and [[1216/1215]] in the 19-limit. | ||
Line 209: | Line 209: | ||
default [[File:77-EDO_Revo_Sagittal.svg]] | default [[File:77-EDO_Revo_Sagittal.svg]] | ||
</imagemap> | </imagemap> | ||
=== Ups and downs notation === | |||
Using [[Helmholtz–Ellis]] accidentals, 77edo can be notated using [[ups and downs notation]]: | |||
{{Sharpness-sharp7}} | |||
== Regular temperament properties == | == Regular temperament properties == | ||
Line 343: | Line 347: | ||
== Zeta properties == | == Zeta properties == | ||
===Zeta peak index=== | === Zeta peak index === | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! colspan="3" | Tuning | ||
! | ! colspan="3" | Strength | ||
! colspan="2" | Closest EDO | |||
! colspan="2" | Integer limit | |||
!EDO | |||
! | |||
|- | |- | ||
|[[414zpi]] | ! ZPI | ||
|76.9918536925042 | ! Steps per octave | ||
|15.5860645308353 | ! Step size (cents) | ||
|8.194847 | ! Height | ||
|1.311364 | ! Integral | ||
|17.029289 | ! Gap | ||
|77edo | ! EDO | ||
|1200.12696887432 | ! Octave (cents) | ||
|10 | ! Consistent | ||
|10 | ! Distinct | ||
|- | |||
| [[414zpi]] | |||
| 76.9918536925042 | |||
| 15.5860645308353 | |||
| 8.194847 | |||
| 1.311364 | |||
| 17.029289 | |||
| 77edo | |||
| 1200.12696887432 | |||
| 10 | |||
| 10 | |||
|} | |} | ||
== Music == | == Music == | ||
; [[Jake Freivald]] | ; [[Jake Freivald]] |
Revision as of 02:32, 19 January 2025
← 76edo | 77edo | 78edo → |
Theory
With harmonic 3 less than a cent flat, harmonic 5 a bit over three cents sharp and 7's less flat than that, 77edo represents an excellent tuning choice for both valentine, the 31 & 46 temperament, and starling, the 126/125 planar temperament, giving the optimal patent val for 11-limit valentine and its 13-limit extensions dwynwen and valentino, as well as 11-limit starling and oxpecker temperaments. It also gives the optimal patent val for grackle and various members of the unicorn family, with a generator of 4\77 instead of the 5\77 (which gives valentine). These are 7-limit alicorn and 11- and 13-limit camahueto.
77et tempers out 32805/32768 in the 5-limit, 126/125, 1029/1024, and 6144/6125 in the 7-limit, 121/120, 176/175, 385/384, and 441/440 in the 11-limit, and 196/195, 351/350, 352/351, 676/675 and 729/728 in the 13-limit.
The 17 and 19 are tuned fairly well, making it consistent to the no-11 21-odd-limit. The equal temperament tempers out 256/255 in the 17-limit; and 171/170, 361/360, 513/512, and 1216/1215 in the 19-limit.
77edo is an excellent edo for Carlos Alpha, since the difference between 5 steps of 77edo and 1 step of Carlos Alpha is only −0.042912 cents.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.66 | +3.30 | -2.59 | -5.86 | +1.03 | +4.14 | -1.41 | -4.90 | -1.01 | -7.37 | -1.99 |
Relative (%) | +0.0 | -4.2 | +21.2 | -16.6 | -37.6 | +6.6 | +26.5 | -9.0 | -31.4 | -6.5 | -47.3 | -12.8 | |
Steps (reduced) |
77 (0) |
122 (45) |
179 (25) |
216 (62) |
266 (35) |
285 (54) |
315 (7) |
327 (19) |
348 (40) |
374 (66) |
381 (73) |
401 (16) |
Harmonic | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.30 | +2.77 | +4.62 | -0.78 | +0.57 | +5.19 | -1.38 | +7.32 | +5.98 | -6.10 | +1.90 | +5.74 |
Relative (%) | +46.8 | +17.8 | +29.7 | -5.0 | +3.6 | +33.3 | -8.9 | +46.9 | +38.4 | -39.1 | +12.2 | +36.9 | |
Steps (reduced) |
413 (28) |
418 (33) |
428 (43) |
441 (56) |
453 (68) |
457 (72) |
467 (5) |
474 (12) |
477 (15) |
485 (23) |
491 (29) |
499 (37) |
Intervals
Degree | Cents | Approximate Ratios* |
---|---|---|
0 | 0.000 | 1/1 |
1 | 15.584 | 81/80, 91/90, 99/98, 105/104 |
2 | 31.169 | 49/48, 55/54, 64/63, 65/64, 100/99 |
3 | 46.753 | 33/32, 36/35, 40/39, 45/44, 50/49 |
4 | 62.338 | 26/25, 27/26, 28/27 |
5 | 77.922 | 21/20, 22/21, 25/24 |
6 | 93.506 | 18/17, 19/18, 20/19 |
7 | 109.091 | 16/15, 17/16 |
8 | 124.675 | 14/13, 15/14 |
9 | 140.260 | 13/12 |
10 | 155.844 | 11/10, 12/11 |
11 | 171.429 | 21/19 |
12 | 187.013 | 10/9 |
13 | 202.597 | 9/8 |
14 | 218.182 | 17/15 |
15 | 233.766 | 8/7 |
16 | 249.351 | 15/13, 22/19 |
17 | 264.935 | 7/6 |
18 | 280.519 | 20/17 |
19 | 296.104 | 13/11, 19/16, 32/27 |
20 | 311.688 | 6/5 |
21 | 327.273 | 98/81 |
22 | 342.857 | 11/9, 17/14 |
23 | 358.442 | 16/13, 21/17 |
24 | 374.026 | 26/21, 56/45 |
25 | 389.610 | 5/4 |
26 | 405.195 | 19/15, 24/19, 33/26 |
27 | 420.779 | 14/11, 32/25 |
28 | 436.364 | 9/7 |
29 | 451.948 | 13/10 |
30 | 467.532 | 17/13, 21/16 |
31 | 483.117 | 120/91 |
32 | 498.701 | 4/3 |
33 | 514.286 | 27/20 |
34 | 529.870 | 19/14 |
35 | 545.455 | 11/8, 15/11, 26/19 |
36 | 561.039 | 18/13 |
37 | 576.623 | 7/5 |
38 | 592.208 | 24/17, 38/27, 45/32 |
… | … | … |
* As a 19-limit temperament
Notation
Sagittal notation
Evo flavor

Revo flavor

Ups and downs notation
Using Helmholtz–Ellis accidentals, 77edo can be notated using ups and downs notation:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-122 77⟩ | [⟨77 122]] | +0.207 | 0.207 | 1.33 |
2.3.5 | 32805/32768, 1594323/1562500 | [⟨77 122 179]] | −0.336 | 0.785 | 5.04 |
2.3.5.7 | 126/125, 1029/1024, 10976/10935 | [⟨77 122 179 216]] | −0.021 | 0.872 | 5.59 |
2.3.5.7.11 | 121/120, 126/125, 176/175, 10976/10935 | [⟨77 122 179 216 266]] | +0.322 | 1.039 | 6.66 |
2.3.5.7.11.13 | 121/120, 126/125, 176/175, 196/195, 676/675 | [⟨77 122 179 216 266 285]] | +0.222 | 0.974 | 6.25 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 4\77 | 62.34 | 28/27 | Unicorn / alicorn (77e) / camahueto (77) / qilin (77) |
1 | 5\77 | 77.92 | 21/20 | Valentine |
1 | 9\77 | 140.26 | 13/12 | Tsaharuk |
1 | 15\77 | 233.77 | 8/7 | Guiron |
1 | 16\77 | 249.35 | 15/13 | Hemischis (77e) |
1 | 20\77 | 311.69 | 6/5 | Oolong |
1 | 23\77 | 358.44 | 16/13 | Restles |
1 | 31\77 | 483.12 | 45/34 | Hemiseven |
1 | 32\77 | 498.70 | 4/3 | Grackle |
1 | 34\77 | 529.87 | 512/375 | Tuskaloosa Muscogee |
7 | 32\77 (1\77) |
498.70 (15.58) |
4/3 (81/80) |
Absurdity |
11 | 32\77 (3\77) |
498.70 (46.75) |
4/3 (36/35) |
Hendecatonic |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Zeta properties
Zeta peak index
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
414zpi | 76.9918536925042 | 15.5860645308353 | 8.194847 | 1.311364 | 17.029289 | 77edo | 1200.12696887432 | 10 | 10 |
Music
- A Seed Planted[dead link], in an organ version of Claudi Meneghin.