Zeta peak index: Difference between revisions
Jump to navigation
Jump to search
m Fredg999 moved page ZPI to Zeta peak index: WP:NCA |
Contribution (talk | contribs) No edit summary |
||
Line 6: | Line 6: | ||
ZPIs are a kind of [[equal-step tuning]]. | ZPIs are a kind of [[equal-step tuning]]. | ||
{|class="wikitable sortable" | |||
!colspan="3"|Tuning | |||
!colspan="3"|Strength | |||
!colspan="2"|Closest EDO | |||
!colspan="2"|Odd-limit | |||
!colspan="2"|Integer limit | |||
|- | |||
!ZPI | |||
!Steps per octave | |||
!Cents | |||
!Height | |||
!Integral | |||
!Gap | |||
!EDO | |||
!Octave | |||
!Consistent | |||
!Distinct | |||
!Consistent | |||
!Distinct | |||
|- | |||
|[[2zpi]] | |||
|1.972767114412 | |||
|608.282646 | |||
|2.340551 | |||
|1.103823 | |||
|10.222388 | |||
|[[2edo]] | |||
|1216.565292 | |||
|3 | |||
|1 | |||
|4 | |||
|3 | |||
|- | |||
|[[3zpi]] | |||
|2.548854231382 | |||
|470.799776 | |||
|1.459266 | |||
|0.414716 | |||
|7.471444 | |||
|[[3edo]] | |||
|1412.399327 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[4zpi]] | |||
|3.059761627805 | |||
|392.187414 | |||
|2.847473 | |||
|1.044063 | |||
|11.592757 | |||
|[[3edo]] | |||
|1176.562242 | |||
|5 | |||
|3 | |||
|6 | |||
|4 | |||
|- | |||
|[[5zpi]] | |||
|3.496845919785 | |||
|343.166393 | |||
|0.925523 | |||
|0.167718 | |||
|5.858780 | |||
|[[3edo]] | |||
|1029.499178 | |||
|1 | |||
|1 | |||
|2 | |||
|2 | |||
|- | |||
|[[6zpi]] | |||
|3.904448124107 | |||
|307.341771 | |||
|2.942394 | |||
|0.927921 | |||
|11.574256 | |||
|[[4edo]] | |||
|1229.367083 | |||
|7 | |||
|1 | |||
|8 | |||
|3 | |||
|- | |||
|[[7zpi]] | |||
|4.322093246475 | |||
|277.643246 | |||
|1.812834 | |||
|0.423656 | |||
|8.808621 | |||
|[[4edo]] | |||
|1110.572985 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[8zpi]] | |||
|4.652876066087 | |||
|257.905000 | |||
|1.129621 | |||
|0.195040 | |||
|6.611021 | |||
|[[5edo]] | |||
|1289.524998 | |||
|1 | |||
|1 | |||
|2 | |||
|2 | |||
|- | |||
|[[9zpi]] | |||
|5.034475598603 | |||
|238.356503 | |||
|3.664837 | |||
|1.131648 | |||
|13.386581 | |||
|[[5edo]] | |||
|1191.782517 | |||
|9 | |||
|3 | |||
|10 | |||
|4 | |||
|- | |||
|[[10zpi]] | |||
|5.391231348573 | |||
|222.583659 | |||
|0.713345 | |||
|0.091351 | |||
|5.235220 | |||
|[[5edo]] | |||
|1112.918295 | |||
|1 | |||
|1 | |||
|2 | |||
|2 | |||
|- | |||
|[[11zpi]] | |||
|5.683417253069 | |||
|211.140577 | |||
|2.061177 | |||
|0.454332 | |||
|9.689889 | |||
|[[6edo]] | |||
|1266.843464 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[12zpi]] | |||
|6.034923687967 | |||
|198.842614 | |||
|2.913512 | |||
|0.699239 | |||
|10.852507 | |||
|[[6edo]] | |||
|1193.055683 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[13zpi]] | |||
|6.373110628934 | |||
|188.291098 | |||
|1.816095 | |||
|0.364080 | |||
|9.293895 | |||
|[[6edo]] | |||
|1129.746590 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[14zpi]] | |||
|6.632178173869 | |||
|180.936032 | |||
|0.603289 | |||
|0.064947 | |||
|4.836586 | |||
|[[7edo]] | |||
|1266.552222 | |||
|3 | |||
|3 | |||
|4 | |||
|4 | |||
|- | |||
|[[15zpi]] | |||
|6.956687656588 | |||
|172.495886 | |||
|4.166936 | |||
|1.162332 | |||
|14.234171 | |||
|[[7edo]] | |||
|1207.471201 | |||
|5 | |||
|3 | |||
|6 | |||
|5 | |||
|- | |||
|[[16zpi]] | |||
|7.285924823948 | |||
|164.701123 | |||
|1.134191 | |||
|0.159745 | |||
|6.678867 | |||
|[[7edo]] | |||
|1152.907860 | |||
|1 | |||
|1 | |||
|2 | |||
|2 | |||
|- | |||
|[[17zpi]] | |||
|7.541342085555 | |||
|159.122870 | |||
|1.551068 | |||
|0.268585 | |||
|8.491473 | |||
|[[8edo]] | |||
|1272.982964 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[18zpi]] | |||
|7.819480070537 | |||
|153.462889 | |||
|2.004530 | |||
|0.355575 | |||
|8.808327 | |||
|[[8edo]] | |||
|1227.703110 | |||
|1 | |||
|1 | |||
|2 | |||
|2 | |||
|- | |||
|[[19zpi]] | |||
|8.137425327401 | |||
|147.466791 | |||
|3.641859 | |||
|0.881068 | |||
|12.934091 | |||
|[[8edo]] | |||
|1179.734328 | |||
|3 | |||
|3 | |||
|7 | |||
|4 | |||
|- | |||
|[[20zpi]] | |||
|8.427502201950 | |||
|142.390945 | |||
|0.632316 | |||
|0.065792 | |||
|5.190978 | |||
|[[8edo]] | |||
|1139.127558 | |||
|3 | |||
|3 | |||
|4 | |||
|4 | |||
|- | |||
|[[21zpi]] | |||
|8.644750943874 | |||
|138.812559 | |||
|1.368228 | |||
|0.209799 | |||
|7.977229 | |||
|[[9edo]] | |||
|1249.313031 | |||
|3 | |||
|3 | |||
|4 | |||
|4 | |||
|- | |||
|[[22zpi]] | |||
|8.949991971429 | |||
|134.078333 | |||
|3.998567 | |||
|0.954565 | |||
|13.186387 | |||
|[[9edo]] | |||
|1206.704993 | |||
|7 | |||
|5 | |||
|8 | |||
|6 | |||
|- | |||
|[[23zpi]] | |||
|9.242995389543 | |||
|129.828043 | |||
|1.238064 | |||
|0.161912 | |||
|6.821862 | |||
|[[9edo]] | |||
|1168.452384 | |||
|1 | |||
|1 | |||
|2 | |||
|2 | |||
|- | |||
|[[24zpi]] | |||
|9.492267674926 | |||
|126.418685 | |||
|1.952783 | |||
|0.359829 | |||
|10.156929 | |||
|[[9edo]] | |||
|1137.768168 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[25zpi]] | |||
|9.724186586529 | |||
|123.403638 | |||
|0.740985 | |||
|0.074196 | |||
|5.272217 | |||
|[[10edo]] | |||
|1234.036379 | |||
|1 | |||
|1 | |||
|2 | |||
|2 | |||
|- | |||
|[[26zpi]] | |||
|10.008456337259 | |||
|119.898610 | |||
|4.477141 | |||
|1.082282 | |||
|14.181485 | |||
|[[10edo]] | |||
|1198.986097 | |||
|7 | |||
|3 | |||
|8 | |||
|5 | |||
|- | |||
|[[27zpi]] | |||
|10.307582490254 | |||
|116.419151 | |||
|1.505698 | |||
|0.225586 | |||
|8.414283 | |||
|[[10edo]] | |||
|1164.191508 | |||
|3 | |||
|3 | |||
|4 | |||
|4 | |||
|- | |||
|[[28zpi]] | |||
|10.511042552717 | |||
|114.165650 | |||
|0.519217 | |||
|0.045875 | |||
|4.782443 | |||
|[[11edo]] | |||
|1255.822145 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[29zpi]] | |||
|10.757239444987 | |||
|111.552783 | |||
|2.933506 | |||
|0.582845 | |||
|11.704948 | |||
|[[11edo]] | |||
|1227.080616 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[30zpi]] | |||
|11.037364857955 | |||
|108.721603 | |||
|2.698327 | |||
|0.469089 | |||
|9.930302 | |||
|[[11edo]] | |||
|1195.937633 | |||
|3 | |||
|3 | |||
|4 | |||
|4 | |||
|- | |||
|[[31zpi]] | |||
|11.301192518802 | |||
|106.183484 | |||
|2.126243 | |||
|0.355179 | |||
|9.698860 | |||
|[[11edo]] | |||
|1168.018329 | |||
|1 | |||
|1 | |||
|3 | |||
|3 | |||
|- | |||
|[[32zpi]] | |||
|11.535009008294 | |||
|104.031128 | |||
|1.023117 | |||
|0.125398 | |||
|6.982530 | |||
|[[12edo]] | |||
|1248.373537 | |||
|1 | |||
|1 | |||
|2 | |||
|2 | |||
|- | |||
|[[33zpi]] | |||
|11.736684783825 | |||
|102.243523 | |||
|1.198408 | |||
|0.146516 | |||
|7.026753 | |||
|[[12edo]] | |||
|1226.922275 | |||
|3 | |||
|3 | |||
|4 | |||
|4 | |||
|- | |||
|[[34zpi]] | |||
|12.023183007293 | |||
|99.807181 | |||
|5.193290 | |||
|1.269599 | |||
|15.899282 | |||
|[[12edo]] | |||
|1197.686169 | |||
|9 | |||
|5 | |||
|10 | |||
|6 | |||
|} | |||
[[Category:Edonoi]][[Category:Zeta]] | [[Category:Edonoi]][[Category:Zeta]] |
Revision as of 01:58, 28 March 2024
A zeta peak index (ZPI or zpi) is a tuning obtained from one of the peaks of the Riemann zeta function.
For instance, the closest zeta peak of 12edo, which has a value of 12.023edo, is the 34th peak of the Riemann zeta function: this tuning is 34zpi.
ZPIs are particularly useful when dealing with zeta peak tunings that are not closely associated with an integer EDO. For example, 22.597edo is 83zpi, 22.807edo is 84zpi, 23.026edo is 85zpi, 23.232edo is 86zpi, and 23.437edo is 87zpi.
ZPIs are a kind of equal-step tuning.
Tuning | Strength | Closest EDO | Odd-limit | Integer limit | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Cents | Height | Integral | Gap | EDO | Octave | Consistent | Distinct | Consistent | Distinct |
2zpi | 1.972767114412 | 608.282646 | 2.340551 | 1.103823 | 10.222388 | 2edo | 1216.565292 | 3 | 1 | 4 | 3 |
3zpi | 2.548854231382 | 470.799776 | 1.459266 | 0.414716 | 7.471444 | 3edo | 1412.399327 | 1 | 1 | 3 | 3 |
4zpi | 3.059761627805 | 392.187414 | 2.847473 | 1.044063 | 11.592757 | 3edo | 1176.562242 | 5 | 3 | 6 | 4 |
5zpi | 3.496845919785 | 343.166393 | 0.925523 | 0.167718 | 5.858780 | 3edo | 1029.499178 | 1 | 1 | 2 | 2 |
6zpi | 3.904448124107 | 307.341771 | 2.942394 | 0.927921 | 11.574256 | 4edo | 1229.367083 | 7 | 1 | 8 | 3 |
7zpi | 4.322093246475 | 277.643246 | 1.812834 | 0.423656 | 8.808621 | 4edo | 1110.572985 | 1 | 1 | 3 | 3 |
8zpi | 4.652876066087 | 257.905000 | 1.129621 | 0.195040 | 6.611021 | 5edo | 1289.524998 | 1 | 1 | 2 | 2 |
9zpi | 5.034475598603 | 238.356503 | 3.664837 | 1.131648 | 13.386581 | 5edo | 1191.782517 | 9 | 3 | 10 | 4 |
10zpi | 5.391231348573 | 222.583659 | 0.713345 | 0.091351 | 5.235220 | 5edo | 1112.918295 | 1 | 1 | 2 | 2 |
11zpi | 5.683417253069 | 211.140577 | 2.061177 | 0.454332 | 9.689889 | 6edo | 1266.843464 | 1 | 1 | 3 | 3 |
12zpi | 6.034923687967 | 198.842614 | 2.913512 | 0.699239 | 10.852507 | 6edo | 1193.055683 | 1 | 1 | 3 | 3 |
13zpi | 6.373110628934 | 188.291098 | 1.816095 | 0.364080 | 9.293895 | 6edo | 1129.746590 | 1 | 1 | 3 | 3 |
14zpi | 6.632178173869 | 180.936032 | 0.603289 | 0.064947 | 4.836586 | 7edo | 1266.552222 | 3 | 3 | 4 | 4 |
15zpi | 6.956687656588 | 172.495886 | 4.166936 | 1.162332 | 14.234171 | 7edo | 1207.471201 | 5 | 3 | 6 | 5 |
16zpi | 7.285924823948 | 164.701123 | 1.134191 | 0.159745 | 6.678867 | 7edo | 1152.907860 | 1 | 1 | 2 | 2 |
17zpi | 7.541342085555 | 159.122870 | 1.551068 | 0.268585 | 8.491473 | 8edo | 1272.982964 | 1 | 1 | 3 | 3 |
18zpi | 7.819480070537 | 153.462889 | 2.004530 | 0.355575 | 8.808327 | 8edo | 1227.703110 | 1 | 1 | 2 | 2 |
19zpi | 8.137425327401 | 147.466791 | 3.641859 | 0.881068 | 12.934091 | 8edo | 1179.734328 | 3 | 3 | 7 | 4 |
20zpi | 8.427502201950 | 142.390945 | 0.632316 | 0.065792 | 5.190978 | 8edo | 1139.127558 | 3 | 3 | 4 | 4 |
21zpi | 8.644750943874 | 138.812559 | 1.368228 | 0.209799 | 7.977229 | 9edo | 1249.313031 | 3 | 3 | 4 | 4 |
22zpi | 8.949991971429 | 134.078333 | 3.998567 | 0.954565 | 13.186387 | 9edo | 1206.704993 | 7 | 5 | 8 | 6 |
23zpi | 9.242995389543 | 129.828043 | 1.238064 | 0.161912 | 6.821862 | 9edo | 1168.452384 | 1 | 1 | 2 | 2 |
24zpi | 9.492267674926 | 126.418685 | 1.952783 | 0.359829 | 10.156929 | 9edo | 1137.768168 | 1 | 1 | 3 | 3 |
25zpi | 9.724186586529 | 123.403638 | 0.740985 | 0.074196 | 5.272217 | 10edo | 1234.036379 | 1 | 1 | 2 | 2 |
26zpi | 10.008456337259 | 119.898610 | 4.477141 | 1.082282 | 14.181485 | 10edo | 1198.986097 | 7 | 3 | 8 | 5 |
27zpi | 10.307582490254 | 116.419151 | 1.505698 | 0.225586 | 8.414283 | 10edo | 1164.191508 | 3 | 3 | 4 | 4 |
28zpi | 10.511042552717 | 114.165650 | 0.519217 | 0.045875 | 4.782443 | 11edo | 1255.822145 | 1 | 1 | 3 | 3 |
29zpi | 10.757239444987 | 111.552783 | 2.933506 | 0.582845 | 11.704948 | 11edo | 1227.080616 | 1 | 1 | 3 | 3 |
30zpi | 11.037364857955 | 108.721603 | 2.698327 | 0.469089 | 9.930302 | 11edo | 1195.937633 | 3 | 3 | 4 | 4 |
31zpi | 11.301192518802 | 106.183484 | 2.126243 | 0.355179 | 9.698860 | 11edo | 1168.018329 | 1 | 1 | 3 | 3 |
32zpi | 11.535009008294 | 104.031128 | 1.023117 | 0.125398 | 6.982530 | 12edo | 1248.373537 | 1 | 1 | 2 | 2 |
33zpi | 11.736684783825 | 102.243523 | 1.198408 | 0.146516 | 7.026753 | 12edo | 1226.922275 | 3 | 3 | 4 | 4 |
34zpi | 12.023183007293 | 99.807181 | 5.193290 | 1.269599 | 15.899282 | 12edo | 1197.686169 | 9 | 5 | 10 | 6 |