|
|
Line 22: |
Line 22: |
|
| |
|
| ==Scale tree== | | ==Scale tree== |
| {{Todo|cleanup|inline=1|comment=Clean up scale tree}} | | {{Scale tree|Comments= |
| Optional types of 'JI [[Blown Fifth]]' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
| | 1/1: near exact-7/6 [[Armodue]]; |
| | | 4/3: near exact-20/17 [[Pentagoth]]; |
| | | 7/5: near exact-5/4 [[Mavila]]; |
| Generator ranges:
| | 3/2: near exact-13/11 Pentagoth; |
| *Chroma-positive generator: 666.6667 cents (5\9) to 685.7143 cents (4\7)
| | 7/4: near exact-7/4 [[Armodue]]; |
| * Chroma-negative generator: 514.2857 cents (3\7) to 533.3333 cents (4\9)
| | 10/3: near exact-6/5 [[Mavila]]; }} |
| | |
| {| class="wikitable"
| |
| |-
| |
| ! colspan="3" | Generator
| |
| ! |<span style="display: block; text-align: center;">'''Generator size (cents)'''</span>
| |
| ! | Pentachord steps
| |
| ! |Comments
| |
| |-
| |
| | |4\[[7edo|7]]
| |
| | |
| |
| | |
| |
| | |685.714
| |
| | |1 1 1 0
| |
| | |
| |
| |-
| |
| |53\93
| |
| |
| |
| |
| |
| | 683.871
| |
| |13 13 13 1
| |
| |
| |
| |-
| |
| | |
| |
| | |102\[[179edo|179]]
| |
| | |
| |
| | | 683.798
| |
| | |25 25 25 2
| |
| | | Approximately 0.03 cents away from [[95/64]]
| |
| |-
| |
| | 49\86
| |
| |
| |
| |
| |
| |683.721
| |
| |12 12 12 1
| |
| |
| |
| |-
| |
| |
| |
| |94\165
| |
| |
| |
| |683.636
| |
| |23 23 23 2
| |
| |
| |
| |-
| |
| |45\79
| |
| |
| |
| |
| |
| |683.544
| |
| |11 11 11 1
| |
| |
| |
| |-
| |
| |
| |
| |86\151
| |
| |
| |
| | 683.444
| |
| |21 21 21 2
| |
| |
| |
| |-
| |
| | 41\72
| |
| |
| |
| |
| |
| |683.333
| |
| | 10 10 10 1
| |
| |
| |
| |-
| |
| |
| |
| |78\137
| |
| |
| |
| |683.212
| |
| |19 19 19 2
| |
| |
| |
| |-
| |
| |37\65
| |
| |
| |
| |
| |
| |683.077
| |
| | 9 9 9 1
| |
| |
| |
| |-
| |
| |
| |
| |70\123
| |
| |
| |
| |682.927
| |
| |17 17 17 2
| |
| |
| |
| |-
| |
| | |33\[[58edo|58]]
| |
| | |
| |
| | |
| |
| | |682.758
| |
| | |8 8 8 1
| |
| | |2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones.
| |
| |-
| |
| |
| |
| |62\109
| |
| |
| |
| |682.569
| |
| |15 15 15 2
| |
| |
| |
| |-
| |
| |29\51
| |
| |
| |
| |
| |
| |682.353
| |
| |7 7 7 1
| |
| |
| |
| |-
| |
| |
| |
| |54\95
| |
| |
| |
| |682.105
| |
| | 13 13 13 2
| |
| |
| |
| |-
| |
| |25\44
| |
| |
| |
| |
| |
| |681.818
| |
| |6 6 6 1
| |
| |
| |
| |-
| |
| |
| |
| |46\81
| |
| |
| |
| |681.4815
| |
| |11 11 11 2
| |
| |
| |
| |-
| |
| | | 21\37
| |
| | |
| |
| | |
| |
| | |681.081
| |
| | |5 5 5 1
| |
| | |
| |
| |-
| |
| |
| |
| |59\104
| |
| |
| |
| |680.769
| |
| |14 14 14 3
| |
| |
| |
| |-
| |
| |
| |
| |38\67
| |
| |
| |
| |680.597
| |
| |9 9 9 2
| |
| |
| |
| |-
| |
| |
| |
| |55\97
| |
| |
| |
| |680.412
| |
| |13 13 13 3
| |
| |
| |
| |-
| |
| | |17\30
| |
| | |
| |
| | |
| |
| | |680
| |
| | |4 4 4 1
| |
| | |L/s = 4
| |
| |-
| |
| |
| |
| |47\83
| |
| |
| |
| |679.518
| |
| |11 11 11 3
| |
| |
| |
| |-
| |
| | |
| |
| | |30\53
| |
| | |
| |
| | |679.245
| |
| | |7 7 7 2
| |
| | |
| |
| |-
| |
| | |
| |
| | |43\76
| |
| | |
| |
| | |678.947
| |
| | |10 10 10 3
| |
| | |
| |
| |-
| |
| | |
| |
| | |56\99
| |
| | |
| |
| | | 678.788
| |
| | |13 13 13 4
| |
| | |
| |
| |-
| |
| | |
| |
| | | 69\122
| |
| | |
| |
| | |678.6885
| |
| | |16 16 16 5
| |
| | |
| |
| |-
| |
| | |
| |
| | |82\145
| |
| | |
| |
| | |678.621
| |
| | | 19 19 19 6
| |
| | |
| |
| |-
| |
| | |
| |
| | | 95\168
| |
| | |
| |
| | |678.571
| |
| | | 22 22 22 7
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |678.569
| |
| | |π π π 1
| |
| | |L/s = π
| |
| |-
| |
| | |
| |
| | |108\191
| |
| | |
| |
| | |678.534
| |
| | |25 25 25 8
| |
| | |
| |
| |-
| |
| | |
| |
| | |121\214
| |
| | |
| |
| | |678.505
| |
| | |28 28 28 9
| |
| | | 28;9 Superdiatonic 1/28-tone <span style="font-size: 12.8000001907349px;">(a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth)</span>
| |
| |-
| |
| | |
| |
| | |134\237
| |
| | |
| |
| | |678.481
| |
| | |31 31 31 10
| |
| | |HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(1/31-tone; Optimum high size of Hornbostel '6th')</span>
| |
| |-
| |
| | |13\23
| |
| | |
| |
| | |
| |
| | | 678.261
| |
| | |3 3 3 1
| |
| | |HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/3-tone)</span>
| |
| |-
| |
| | |
| |
| | |126\223
| |
| | |
| |
| | |678.027
| |
| | |29 29 29 10
| |
| | |HORNBOSTEL TEMPERAMENT
| |
| | |
| <span style="font-size: 12.8000001907349px;">(Armodue 1/29-tone)</span>
| |
| |-
| |
| | |
| |
| | |113\200
| |
| | |
| |
| | |678
| |
| | |26 26 26 9
| |
| | | HORNBOSTEL (& [[Alexei_Stepanovich_Ogolevets|OGOLEVETS]]) TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8')</span>
| |
| |-
| |
| | |
| |
| | |100\177
| |
| | |
| |
| | |677.966
| |
| | | 23 23 23 8
| |
| | |
| |
| |-
| |
| | |
| |
| | |87\154
| |
| | |
| |
| | |677.922
| |
| | |20 20 20 7
| |
| | |
| |
| |-
| |
| | |
| |
| | | 74\131
| |
| | |
| |
| | | 677.863
| |
| | |17 17 17 6
| |
| | |Armodue-Hornbostel 1/17-tone <span style="font-size: 12.8000001907349px;">(the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments)</span>
| |
| |-
| |
| | |
| |
| | |61\108
| |
| | |
| |
| | |677.778
| |
| | |14 14 14 5
| |
| | |Armodue-Hornbostel 1/14-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | | 109\193
| |
| | |677.720
| |
| | |25 25 25 9
| |
| | |Armodue-Hornbostel 1/25-tone
| |
| |-
| |
| | |
| |
| | |48\85
| |
| | |
| |
| | |677.647
| |
| | | 11 11 11 4
| |
| | |Armodue-Hornbostel 1/11-tone <span style="font-size: 12.8000001907349px;">(Optimum accuracy of Phi interval, the note '7')</span>
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 677.562
| |
| | |e e e 1
| |
| | |L/s = e
| |
| |-
| |
| | |
| |
| | |35\62
| |
| | |
| |
| | |677.419
| |
| | | 8 8 8 3
| |
| | | Armodue-Hornbostel 1/8-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |92\163
| |
| | | 677.301
| |
| | |21 21 21 8
| |
| | | 21;8 Superdiatonic 1/21-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |677.28
| |
| | |<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ+1 φ+1 φ+1 1</span>
| |
| | |Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..)
| |
| |-
| |
| | |
| |
| | | 57\101
| |
| | |
| |
| | |677.228
| |
| | |13 13 13 5
| |
| | |13;5 Superdiatonic 1/13-tone
| |
| |-
| |
| | |22\39
| |
| | |
| |
| | |
| |
| | |676.923
| |
| | | 5 5 5 2
| |
| | | Armodue-Hornbostel 1/5-tone <span style="font-size: 12.8000001907349px;">(Optimum low size of Hornbostel '6th')</span>
| |
| |-
| |
| | |
| |
| | |75\133
| |
| | |
| |
| | |676.692
| |
| | |17 17 17 7
| |
| | |17;7 Superdiatonic 1/17-tone <span style="font-size: 12.8000001907349px;">(Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents)</span>
| |
| |-
| |
| | |
| |
| | |53\94
| |
| | |
| |
| | | 676.596
| |
| | |12 12 12 5
| |
| | |
| |
| |-
| |
| | |
| |
| | |31\55
| |
| | |
| |
| | |676.364
| |
| | |7 7 7 3
| |
| | |7;3 Superdiatonic 1/7-tone
| |
| |-
| |
| | |
| |
| | |40\71
| |
| | |
| |
| | |676.056
| |
| | |9 9 9 4
| |
| | |9;4 Superdiatonic 1/9-tone
| |
| |-
| |
| | |
| |
| | | 49\87
| |
| | |
| |
| | | 675.862
| |
| | |11 11 11 5
| |
| | |11;5 Superdiatonic 1/11-tone
| |
| |-
| |
| | |
| |
| | |58\103
| |
| | |
| |
| | |675.728
| |
| | |13 13 13 6
| |
| | |13;6 Superdiatonic 1/13-tone
| |
| |-
| |
| | |9\16
| |
| | |
| |
| | |
| |
| | |675
| |
| | |2 2 2 1
| |
| | |<span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span>ARMODUE ESADECAFONIA (or Goldsmith Temperament)
| |
| |-
| |
| | |
| |
| | |59\105
| |
| | |
| |
| | |674.286
| |
| | | 13 13 13 7
| |
| | |Armodue-Mavila 1/13-tone
| |
| |-
| |
| | |
| |
| | |50\89
| |
| | |
| |
| | |674.157
| |
| | |11 11 11 6
| |
| | |Armodue-Mavila 1/11-tone
| |
| |-
| |
| | |
| |
| | | 41\73
| |
| | |
| |
| | |673.973
| |
| | |9 9 9 5
| |
| | | Armodue-Mavila 1/9-tone <span style="font-size: 12.8000001907349px;">(with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)</span>
| |
| |-
| |
| | |
| |
| | | 32\57
| |
| | |
| |
| | | 673.684
| |
| | |7 7 7 4
| |
| | |Armodue-Mavila 1/7-tone <span style="font-size: 12.8000001907349px;">(the 'Commatic' version of Armodue, because its high accuracy of the [[7/4]] interval, the note '8')</span>
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 673.577
| |
| | |<span style="background-color: #ffffff;">√3 √3 √3 1</span>
| |
| | |
| |
| |-
| |
| | |
| |
| | |55\98
| |
| | |
| |
| | |673.469
| |
| | |12 12 12 7
| |
| | |
| |
| |-
| |
| | |
| |
| | |78\139
| |
| | |
| |
| | |673.381
| |
| | |17 17 17 10
| |
| | |Armodue-Mavila 1/17-tone
| |
| |-
| |
| | |
| |
| | |101\180
| |
| | |
| |
| | |673.333
| |
| | | 22 22 22 13
| |
| | |
| |
| |-
| |
| | |23\41
| |
| | |
| |
| | |
| |
| | |673.171
| |
| | |5 5 5 3
| |
| | | 5;3 Golden Armodue-Mavila 1/5-tone
| |
| |-
| |
| | |
| |
| | |60\107
| |
| | |
| |
| | |672.897
| |
| | |13 13 13 8
| |
| | |13;8 Golden Mavila 1/13-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |672.85
| |
| | |<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ φ φ 1</span>
| |
| | |GOLDEN MAVILA (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span>
| |
| |-
| |
| | |
| |
| | |
| |
| | |97\173
| |
| | |672.832
| |
| | |21 21 21 13
| |
| | |21;13 Golden Mavila 1/21-tone <span style="font-size: 12.8000001907349px;">(Phi is the step 120\173)</span>
| |
| |-
| |
| | |
| |
| | |37\66
| |
| | |
| |
| | |672.727
| |
| | |8 8 8 5
| |
| | | 8;5 Golden Mavila 1/8-tone
| |
| |-
| |
| | |
| |
| | |51\91
| |
| | |
| |
| | | 672.527
| |
| | |11 11 11 7
| |
| | |11;7 Superdiatonic 1/11-tone
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |672.523
| |
| | |π π π 2
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |116\207
| |
| | |672.464
| |
| | | 25 25 25 16
| |
| | |25;16 Superdiatonic 1/25-tone
| |
| |-
| |
| | |
| |
| | |65\116
| |
| | |
| |
| | |672.414
| |
| | |14 14 14 9
| |
| | |14;9 Superdiatonic 1/14-tone
| |
| |-
| |
| | |
| |
| | |79\141
| |
| | |
| |
| | |672.340
| |
| | |17 17 17 11
| |
| | |17;11 Superdiatonic 1/17-tone
| |
| |-
| |
| | |
| |
| | |93\166
| |
| | |
| |
| | |672.289
| |
| | |20 20 20 13
| |
| | |
| |
| |-
| |
| | |
| |
| | |107\191
| |
| | |
| |
| | |672.251
| |
| | |23 23 23 15
| |
| | |
| |
| |-
| |
| | |
| |
| | |121\216
| |
| | |
| |
| | |672.222
| |
| | |26 26 26 17
| |
| | | 26;17 Superdiatonic 1/26-tone
| |
| |-
| |
| | |
| |
| | |135\241
| |
| | |
| |
| | |672.199
| |
| | |29 29 29 19
| |
| | |29;19 Superdiatonic 1/29-tone
| |
| |-
| |
| | |14\25
| |
| | |
| |
| | |
| |
| | |672
| |
| | |3 3 3 2
| |
| | |3;2 Golden Armodue-Mavila 1/3-tone
| |
| |-
| |
| | |
| |
| | |145\259
| |
| | |
| |
| | |671.815
| |
| | |31 31 31 21
| |
| | |31;21 Superdiatonic 1/31-tone
| |
| |-
| |
| | |
| |
| | |131\234
| |
| | |
| |
| | |671.795
| |
| | |28 28 28 19
| |
| | |28;19 Superdiatonic 1/28-tone
| |
| |-
| |
| | |
| |
| | | 117\209
| |
| | |
| |
| | |671.770
| |
| | |25 25 25 17
| |
| | |
| |
| |-
| |
| | |
| |
| | |103\184
| |
| | |
| |
| | |671.739
| |
| | |22 22 22 15
| |
| | |
| |
| |-
| |
| | |
| |
| | |89\159
| |
| | |
| |
| | |671.698
| |
| | |19 19 19 13
| |
| | |
| |
| |-
| |
| | |
| |
| | |75\134
| |
| | |
| |
| | | 671.642
| |
| | |16 16 16 11
| |
| | |
| |
| |-
| |
| | |
| |
| | |61\109
| |
| | |
| |
| | | 671.560
| |
| | | 13 13 13 9
| |
| | |
| |
| |-
| |
| | |
| |
| | |47\84
| |
| | |
| |
| | |671.429
| |
| | |10 10 10 7
| |
| | |
| |
| |-
| |
| |
| |
| |
| |
| |80\143
| |
| | 671.329
| |
| |17 17 17 12
| |
| |
| |
| |-
| |
| | |
| |
| | |33\59
| |
| | |
| |
| | |671.186
| |
| | | 7 7 7 5
| |
| | |
| |
| |-
| |
| |
| |
| |52\93
| |
| |
| |
| |670.968
| |
| | 11 11 11 8
| |
| |
| |
| |-
| |
| | |19\34
| |
| | |
| |
| | |
| |
| | |670.588
| |
| | |4 4 4 3
| |
| | |
| |
| |-
| |
| |
| |
| | 43\77
| |
| |
| |
| |670.13
| |
| |9 9 9 7
| |
| |
| |
| |-
| |
| | | 24\43
| |
| | |
| |
| | |
| |
| | |669.767
| |
| | |5 5 5 4
| |
| | |
| |
| |-
| |
| |
| |
| |53\95
| |
| |
| |
| | 669.474
| |
| |11 11 11 9
| |
| |
| |
| |-
| |
| |29\52
| |
| |
| |
| |
| |
| |669.231
| |
| | 6 6 6 5
| |
| |
| |
| |-
| |
| |
| |
| |63\113
| |
| |
| |
| |669.0265
| |
| |13 13 13 11
| |
| |
| |
| |-
| |
| |34\61
| |
| |
| |
| |
| |
| |668.8525
| |
| |7 7 7 6
| |
| |
| |
| |-
| |
| |
| |
| | 73\131
| |
| |
| |
| |668.702
| |
| |15 15 15 13
| |
| |
| |
| |-
| |
| | 39\70
| |
| |
| |
| |
| |
| |668.571
| |
| |8 8 8 7
| |
| |
| |
| |-
| |
| |
| |
| |83\149
| |
| |
| |
| | 668.456
| |
| |17 17 17 15
| |
| |
| |
| |-
| |
| | 44\79
| |
| |
| |
| |
| |
| | 668.354
| |
| |9 9 9 8
| |
| |
| |
| |-
| |
| |
| |
| |93\167
| |
| |
| |
| |668.2365
| |
| |19 19 19 17
| |
| |
| |
| |-
| |
| |49\88
| |
| |
| |
| |
| |
| |668.182
| |
| | 10 10 10 9
| |
| |
| |
| |-
| |
| |
| |
| |103\185
| |
| |
| |
| |668.108
| |
| |21 21 21 9
| |
| |
| |
| |-
| |
| |54\97
| |
| |
| |
| |
| |
| | 668.041
| |
| |11 11 11 10
| |
| |
| |
| |-
| |
| |
| |
| | 113\203
| |
| |
| |
| |667.98
| |
| |23 23 23 21
| |
| |
| |
| |-
| |
| |59\106
| |
| |
| |
| |
| |
| |667.925
| |
| |12 12 12 11
| |
| |
| |
| |-
| |
| |
| |
| |123\221
| |
| |
| |
| | 667.873
| |
| |25 25 25 23
| |
| |
| |
| |-
| |
| |64\115
| |
| |
| |
| |
| |
| |667.826
| |
| |13 13 13 12
| |
| |
| |
| |-
| |
| | |5\[[9edo|9]]
| |
| | |
| |
| | |
| |
| | | 666.667
| |
| | |1 1 1 1
| |
| | |
| |
| |}
| |
|
| |
|
| [[Category:9-tone scales]] | | [[Category:9-tone scales]] |
| [[Category:Mavila]] | | [[Category:Mavila]] |
| [[Category:Superdiatonic]]
| |
7L 2s, named armotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 2 small steps, repeating every octave. Generators that produce this scale range from 666.7 ¢ to 685.7 ¢, or from 514.3 ¢ to 533.3 ¢.
Scales of this form are strongly associated with Armodue theory, as applied to septimal mavila and Hornbostel temperaments.
Name
The TAMNAMS name for this pattern is armotonic, in reference to Armodue theory. Superdiatonic is also in use.
Intervals
- This article assumes TAMNAMS for naming step ratios, mossteps, and mosdegrees.
Intervals of 7L 2s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-armstep
|
Perfect 0-armstep
|
P0arms
|
0
|
0.0 ¢
|
1-armstep
|
Minor 1-armstep
|
m1arms
|
s
|
0.0 ¢ to 133.3 ¢
|
Major 1-armstep
|
M1arms
|
L
|
133.3 ¢ to 171.4 ¢
|
2-armstep
|
Minor 2-armstep
|
m2arms
|
L + s
|
171.4 ¢ to 266.7 ¢
|
Major 2-armstep
|
M2arms
|
2L
|
266.7 ¢ to 342.9 ¢
|
3-armstep
|
Minor 3-armstep
|
m3arms
|
2L + s
|
342.9 ¢ to 400.0 ¢
|
Major 3-armstep
|
M3arms
|
3L
|
400.0 ¢ to 514.3 ¢
|
4-armstep
|
Perfect 4-armstep
|
P4arms
|
3L + s
|
514.3 ¢ to 533.3 ¢
|
Augmented 4-armstep
|
A4arms
|
4L
|
533.3 ¢ to 685.7 ¢
|
5-armstep
|
Diminished 5-armstep
|
d5arms
|
3L + 2s
|
514.3 ¢ to 666.7 ¢
|
Perfect 5-armstep
|
P5arms
|
4L + s
|
666.7 ¢ to 685.7 ¢
|
6-armstep
|
Minor 6-armstep
|
m6arms
|
4L + 2s
|
685.7 ¢ to 800.0 ¢
|
Major 6-armstep
|
M6arms
|
5L + s
|
800.0 ¢ to 857.1 ¢
|
7-armstep
|
Minor 7-armstep
|
m7arms
|
5L + 2s
|
857.1 ¢ to 933.3 ¢
|
Major 7-armstep
|
M7arms
|
6L + s
|
933.3 ¢ to 1028.6 ¢
|
8-armstep
|
Minor 8-armstep
|
m8arms
|
6L + 2s
|
1028.6 ¢ to 1066.7 ¢
|
Major 8-armstep
|
M8arms
|
7L + s
|
1066.7 ¢ to 1200.0 ¢
|
9-armstep
|
Perfect 9-armstep
|
P9arms
|
7L + 2s
|
1200.0 ¢
|
Note names
7L 2s, when viewed under Armodue theory, can be notated using Armodue notation.
Theory
Temperament interpretations
Mavila is an important harmonic entropy minimum here, insofar as 678¢ can be considered a fifth. Other temperaments include septimal mavila and Hornbostel.
Modes
Modes of 7L 2s
UDP |
Cyclic order |
Step pattern
|
8|0 |
1 |
LLLLsLLLs
|
7|1 |
6 |
LLLsLLLLs
|
6|2 |
2 |
LLLsLLLsL
|
5|3 |
7 |
LLsLLLLsL
|
4|4 |
3 |
LLsLLLsLL
|
3|5 |
8 |
LsLLLLsLL
|
2|6 |
4 |
LsLLLsLLL
|
1|7 |
9 |
sLLLLsLLL
|
0|8 |
5 |
sLLLsLLLL
|
Scale tree
Template:Scale tree