57edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
m Scales of 57EDO: rename to just ‘scales’
Cleanup
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|57}}
{{EDO intro|57}}
== Theory ==
== Theory ==
It can be used to tune [[Mothra_temperament|mothra temperament]], and is an excellent tuning for the 2.5/3.7.11.13.17.19 [[just_intonation_subgroup|just intonation subgroup]]. One way to describe 57 is that it has a [[5-limit|5-limit]] part consisting of three versions of 19, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate [[11/8]], which is 26\57. This gives the [[19-limit|19-limit]] 46&57 temperament [[Sensipent_family|Heinz]].
57edo can be used to tune the [[mothra]] temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 [[just intonation subgroup]]. One way to describe 57edo is that it has a [[5-limit]] part consisting of three [[ring number|ring]]s of 19edo, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate [[11/8]], which is 26\57. This gives the [[19-limit]] 46 & 57 temperament [[heinz]].


[[5-limit|5-limit]] [[comma]]s: [[81/80]], [[3125/3072]]
[[5-limit|5-limit]] [[comma]]s: [[81/80]], [[3125/3072]]
Line 10: Line 11:
[[11-limit|11-limit]] commas: [[99/98]], [[385/384]], [[441/440]], [[625/616]]
[[11-limit|11-limit]] commas: [[99/98]], [[385/384]], [[441/440]], [[625/616]]


===Odd harmonics===
=== Odd harmonics ===
 
{{Harmonics in equal|57}}
{{harmonics in equal|57}}


==Intervals==
== Intervals ==


{| class="wikitable"
{| class="wikitable center-1 right-2 center-3 center-4"
|-
|-
! [[Degree|Degree]]
! #
![[cent|Cents]]
! [[Cent]]s
! [[Ups and downs notation]] (flat fifth 11\19)
! [[Ups and downs notation|Ups and Downs Notation]]<br>(Flat Fifth 11\19)
! [[Ups and downs notation]] (sharp fifth 34\57)
! [[Ups and downs notation|Ups and Downs Notation]]<br>(Sharp Fifth 34\57)
|-
|-
| style="text-align:center;" | 0
| 0
| style="text-align:right;" | 0.0000
| 0.00
| {{UDnote|step=0}}
| {{UDnote|step=0}}
| {{UDnote|fifth=34|step=0}}
| {{UDnote|fifth=34|step=0}}
|-
|-
| style="text-align:center;" | 1
| 1
| style="text-align:right;" | 21.0526
| 21.05
| {{UDnote|step=1}}
| {{UDnote|step=1}}
| {{UDnote|fifth=34|step=1}}
| {{UDnote|fifth=34|step=1}}
|-
|-
| style="text-align:center;" | 2
| 2
| style="text-align:right;" | 42.1053
| 42.11
| {{UDnote|step=2}}
| {{UDnote|step=2}}
| {{UDnote|fifth=34|step=2}}
| {{UDnote|fifth=34|step=2}}
|-
|-
| style="text-align:center;" | 3
| 3
| style="text-align:right;" | 63.1579
| 63.16
| {{UDnote|step=3}}
| {{UDnote|step=3}}
| {{UDnote|fifth=34|step=3}}
| {{UDnote|fifth=34|step=3}}
|-
|-
| style="text-align:center;" | 4
| 4
| style="text-align:right;" | 84.2105
| 84.21
| {{UDnote|step=4}}
| {{UDnote|step=4}}
| {{UDnote|fifth=34|step=4}}
| {{UDnote|fifth=34|step=4}}
|-
|-
| style="text-align:center;" | 5
| 5
| style="text-align:right;" | 105.2632
| 105.26
| {{UDnote|step=5}}
| {{UDnote|step=5}}
| {{UDnote|fifth=34|step=5}}
| {{UDnote|fifth=34|step=5}}
|-
|-
| style="text-align:center;" | 6
| 6
| style="text-align:right;" | 126.3158
| 126.32
| {{UDnote|step=6}}
| {{UDnote|step=6}}
| {{UDnote|fifth=34|step=6}}
| {{UDnote|fifth=34|step=6}}
|-
|-
| style="text-align:center;" | 7
| 7
| style="text-align:right;" | 147.3684
| 147.37
| {{UDnote|step=7}}
| {{UDnote|step=7}}
| {{UDnote|fifth=34|step=7}}
| {{UDnote|fifth=34|step=7}}
|-
|-
| style="text-align:center;" | 8
| 8
| style="text-align:right;" | 168.42105
| 168.42
| {{UDnote|step=8}}
| {{UDnote|step=8}}
| {{UDnote|fifth=34|step=8}}
| {{UDnote|fifth=34|step=8}}
|-
|-
| style="text-align:center;" | 9
| 9
| style="text-align:right;" | 189.4737
| 189.47
| {{UDnote|step=9}}
| {{UDnote|step=9}}
| {{UDnote|fifth=34|step=9}}
| {{UDnote|fifth=34|step=9}}
|-
|-
| style="text-align:center;" | 10
| 10
| style="text-align:right;" | 210.5263
| 210.53
| {{UDnote|step=10}}
| {{UDnote|step=10}}
| {{UDnote|fifth=34|step=10}}
| {{UDnote|fifth=34|step=10}}
|-
|-
| style="text-align:center;" | 11
| 11
| style="text-align:right;" | 231.57895
| 231.58
| {{UDnote|step=11}}
| {{UDnote|step=11}}
| {{UDnote|fifth=34|step=11}}
| {{UDnote|fifth=34|step=11}}
|-
|-
| style="text-align:center;" | 12
| 12
| style="text-align:right;" | 252.6316
| 252.63
| {{UDnote|step=12}}
| {{UDnote|step=12}}
| {{UDnote|fifth=34|step=12}}
| {{UDnote|fifth=34|step=12}}
|-
|-
| style="text-align:center;" | 13
| 13
| style="text-align:right;" | 273.6842
| 273.68
| {{UDnote|step=13}}
| {{UDnote|step=13}}
| {{UDnote|fifth=34|step=13}}
| {{UDnote|fifth=34|step=13}}
|-
|-
| style="text-align:center;" | 14
| 14
| style="text-align:right;" | 294.7368
| 294.74
| {{UDnote|step=14}}
| {{UDnote|step=14}}
| {{UDnote|fifth=34|step=14}}
| {{UDnote|fifth=34|step=14}}
|-
|-
| style="text-align:center;" | 15
| 15
| style="text-align:right;" | 315.7895
| 315.79
| {{UDnote|step=15}}
| {{UDnote|step=15}}
| {{UDnote|fifth=34|step=15}}
| {{UDnote|fifth=34|step=15}}
|-
|-
| style="text-align:center;" | 16
| 16
| style="text-align:right;" | 336.8421
| 336.84
| {{UDnote|step=16}}
| {{UDnote|step=16}}
| {{UDnote|fifth=34|step=16}}
| {{UDnote|fifth=34|step=16}}
|-
|-
| style="text-align:center;" | 17
| 17
| style="text-align:right;" | 357.8947
| 357.89
| {{UDnote|step=17}}
| {{UDnote|step=17}}
| {{UDnote|fifth=34|step=17}}
| {{UDnote|fifth=34|step=17}}
|-
|-
| style="text-align:center;" | 18
| 18
| style="text-align:right;" | 378.9474
| 378.95
| {{UDnote|step=18}}
| {{UDnote|step=18}}
| {{UDnote|fifth=34|step=18}}
| {{UDnote|fifth=34|step=18}}
|-
|-
| style="text-align:center;" | 19
| 19
| style="text-align:right;" | 400
| 400.00
| {{UDnote|step=19}}
| {{UDnote|step=19}}
| {{UDnote|fifth=34|step=19}}
| {{UDnote|fifth=34|step=19}}
|-
|-
| style="text-align:center;" | 20
| 20
| style="text-align:right;" | 421.0526
| 421.05
| {{UDnote|step=20}}
| {{UDnote|step=20}}
| {{UDnote|fifth=34|step=20}}
| {{UDnote|fifth=34|step=20}}
|-
|-
| style="text-align:center;" | 21
| 21
| style="text-align:right;" | 442.1053
| 442.11
| {{UDnote|step=21}}
| {{UDnote|step=21}}
| {{UDnote|fifth=34|step=21}}
| {{UDnote|fifth=34|step=21}}
|-
|-
| style="text-align:center;" | 22
| 22
| style="text-align:right;" | 463.1579
| 463.16
| {{UDnote|step=22}}
| {{UDnote|step=22}}
| {{UDnote|fifth=34|step=22}}
| {{UDnote|fifth=34|step=22}}
|-
|-
| style="text-align:center;" | 23
| 23
| style="text-align:right;" | 484.2105
| 484.21
| {{UDnote|step=23}}
| {{UDnote|step=23}}
| {{UDnote|fifth=34|step=23}}
| {{UDnote|fifth=34|step=23}}
|-
|-
| style="text-align:center;" | 24
| 24
| style="text-align:right;" | 505.2632
| 505.26
| {{UDnote|step=24}}
| {{UDnote|step=24}}
| {{UDnote|fifth=34|step=24}}
| {{UDnote|fifth=34|step=24}}
|-
|-
| style="text-align:center;" | 25
| 25
| style="text-align:right;" | 526.3158
| 526.32
| {{UDnote|step=25}}
| {{UDnote|step=25}}
| {{UDnote|fifth=34|step=25}}
| {{UDnote|fifth=34|step=25}}
|-
|-
| style="text-align:center;" | 26
| 26
| style="text-align:right;" | 547.3684
| 547.37
| {{UDnote|step=26}}
| {{UDnote|step=26}}
| {{UDnote|fifth=34|step=26}}
| {{UDnote|fifth=34|step=26}}
|-
|-
| style="text-align:center;" | 27
| 27
| style="text-align:right;" | 568.42105
| 568.42
| {{UDnote|step=27}}
| {{UDnote|step=27}}
| {{UDnote|fifth=34|step=27}}
| {{UDnote|fifth=34|step=27}}
|-
|-
| style="text-align:center;" | 28
| 28
| style="text-align:right;" | 589.4737
| 589.47
| {{UDnote|step=28}}
| {{UDnote|step=28}}
| {{UDnote|fifth=34|step=28}}
| {{UDnote|fifth=34|step=28}}
|-
|-
| style="text-align:center;" | 29
| 29
| style="text-align:right;" | 610.5263
| 610.53
| {{UDnote|step=29}}
| {{UDnote|step=29}}
| {{UDnote|fifth=34|step=29}}
| {{UDnote|fifth=34|step=29}}
|-
|-
| style="text-align:center;" | 30
| 30
| style="text-align:right;" | 631.57895
| 631.58
| {{UDnote|step=30}}
| {{UDnote|step=30}}
| {{UDnote|fifth=34|step=30}}
| {{UDnote|fifth=34|step=30}}
|-
|-
| style="text-align:center;" | 31
| 31
| style="text-align:right;" | 652.6316
| 652.63
| {{UDnote|step=31}}
| {{UDnote|step=31}}
| {{UDnote|fifth=34|step=31}}
| {{UDnote|fifth=34|step=31}}
|-
|-
| style="text-align:center;" | 32
| 32
| style="text-align:right;" | 673.6842
| 673.68
| {{UDnote|step=32}}
| {{UDnote|step=32}}
| {{UDnote|fifth=34|step=32}}
| {{UDnote|fifth=34|step=32}}
|-
|-
| style="text-align:center;" | 33
| 33
| style="text-align:right;" | 694.7368
| 694.74
| {{UDnote|step=33}}
| {{UDnote|step=33}}
| {{UDnote|fifth=34|step=33}}
| {{UDnote|fifth=34|step=33}}
|-
|-
| style="text-align:center;" | 34
| 34
| style="text-align:right;" | 715.7895
| 715.79
| {{UDnote|step=34}}
| {{UDnote|step=34}}
| {{UDnote|fifth=34|step=34}}
| {{UDnote|fifth=34|step=34}}
|-
|-
| style="text-align:center;" | 35
| 35
| style="text-align:right;" | 736.8421
| 736.84
| {{UDnote|step=35}}
| {{UDnote|step=35}}
| {{UDnote|fifth=34|step=35}}
| {{UDnote|fifth=34|step=35}}
|-
|-
| style="text-align:center;" | 36
| 36
| style="text-align:right;" | 757.8947
| 757.89
| {{UDnote|step=36}}
| {{UDnote|step=36}}
| {{UDnote|fifth=34|step=36}}
| {{UDnote|fifth=34|step=36}}
|-
|-
| style="text-align:center;" | 37
| 37
| style="text-align:right;" | 778.9474
| 778.95
| {{UDnote|step=37}}
| {{UDnote|step=37}}
| {{UDnote|fifth=34|step=37}}
| {{UDnote|fifth=34|step=37}}
|-
|-
| style="text-align:center;" | 38
| 38
| style="text-align:right;" | 800
| 800.00
| {{UDnote|step=38}}
| {{UDnote|step=38}}
| {{UDnote|fifth=34|step=38}}
| {{UDnote|fifth=34|step=38}}
|-
|-
| style="text-align:center;" | 39
| 39
| style="text-align:right;" | 821.0526
| 821.05
| {{UDnote|step=39}}
| {{UDnote|step=39}}
| {{UDnote|fifth=34|step=39}}
| {{UDnote|fifth=34|step=39}}
|-
|-
| style="text-align:center;" | 40
| 40
| style="text-align:right;" | 842.1053
| 842.11
| {{UDnote|step=40}}
| {{UDnote|step=40}}
| {{UDnote|fifth=34|step=40}}
| {{UDnote|fifth=34|step=40}}
|-
|-
| style="text-align:center;" | 41
| 41
| style="text-align:right;" | 863.1579
| 863.16
| {{UDnote|step=41}}
| {{UDnote|step=41}}
| {{UDnote|fifth=34|step=41}}
| {{UDnote|fifth=34|step=41}}
|-
|-
| style="text-align:center;" | 42
| 42
| style="text-align:right;" | 884.2105
| 884.21
| {{UDnote|step=42}}
| {{UDnote|step=42}}
| {{UDnote|fifth=34|step=42}}
| {{UDnote|fifth=34|step=42}}
|-
|-
| style="text-align:center;" | 43
| 43
| style="text-align:right;" | 905.2632
| 905.26
| {{UDnote|step=43}}
| {{UDnote|step=43}}
| {{UDnote|fifth=34|step=43}}
| {{UDnote|fifth=34|step=43}}
|-
|-
| style="text-align:center;" | 44
| 44
| style="text-align:right;" | 926.3158
| 926.32
| {{UDnote|step=44}}
| {{UDnote|step=44}}
| {{UDnote|fifth=34|step=44}}
| {{UDnote|fifth=34|step=44}}
|-
|-
| style="text-align:center;" | 45
| 45
| style="text-align:right;" | 947.3684
| 947.37
| {{UDnote|step=45}}
| {{UDnote|step=45}}
| {{UDnote|fifth=34|step=45}}
| {{UDnote|fifth=34|step=45}}
|-
|-
| style="text-align:center;" | 46
| 46
| style="text-align:right;" | 968.42105
| 968.42
| {{UDnote|step=46}}
| {{UDnote|step=46}}
| {{UDnote|fifth=34|step=46}}
| {{UDnote|fifth=34|step=46}}
|-
|-
| style="text-align:center;" | 47
| 47
| style="text-align:right;" | 989.4737
| 989.47
| {{UDnote|step=47}}
| {{UDnote|step=47}}
| {{UDnote|fifth=34|step=47}}
| {{UDnote|fifth=34|step=47}}
|-
|-
| style="text-align:center;" | 48
| 48
| style="text-align:right;" | 1010.5263
| 1010.53
| {{UDnote|step=48}}
| {{UDnote|step=48}}
| {{UDnote|fifth=34|step=48}}
| {{UDnote|fifth=34|step=48}}
|-
|-
| style="text-align:center;" | 49
| 49
| style="text-align:right;" | 1031.57895
| 1031.58
| {{UDnote|step=49}}
| {{UDnote|step=49}}
| {{UDnote|fifth=34|step=49}}
| {{UDnote|fifth=34|step=49}}
|-
|-
| style="text-align:center;" | 50
| 50
| style="text-align:right;" | 1052.6316
| 1052.63
| {{UDnote|step=50}}
| {{UDnote|step=50}}
| {{UDnote|fifth=34|step=50}}
| {{UDnote|fifth=34|step=50}}
|-
|-
| style="text-align:center;" | 51
| 51
| style="text-align:right;" | 1073.6842
| 1073.68
| {{UDnote|step=51}}
| {{UDnote|step=51}}
| {{UDnote|fifth=34|step=51}}
| {{UDnote|fifth=34|step=51}}
|-
|-
| style="text-align:center;" | 52
| 52
| style="text-align:right;" | 1094.7368
| 1094.74
| {{UDnote|step=52}}
| {{UDnote|step=52}}
| {{UDnote|fifth=34|step=52}}
| {{UDnote|fifth=34|step=52}}
|-
|-
| style="text-align:center;" | 53
| 53
| style="text-align:right;" | 1115.7895
| 1115.79
| {{UDnote|step=53}}
| {{UDnote|step=53}}
| {{UDnote|fifth=34|step=53}}
| {{UDnote|fifth=34|step=53}}
|-
|-
| style="text-align:center;" | 54
| 54
| style="text-align:right;" | 1136.8421
| 1136.84
| {{UDnote|step=54}}
| {{UDnote|step=54}}
| {{UDnote|fifth=34|step=54}}
| {{UDnote|fifth=34|step=54}}
|-
|-
| style="text-align:center;" | 55
| 55
| style="text-align:right;" | 1157.8947
| 1157.89
| {{UDnote|step=55}}
| {{UDnote|step=55}}
| {{UDnote|fifth=34|step=55}}
| {{UDnote|fifth=34|step=55}}
|-
|-
| style="text-align:center;" | 56
| 56
| style="text-align:right;" | 1178.9474
| 1178.95
| {{UDnote|step=56}}
| {{UDnote|step=56}}
| {{UDnote|fifth=34|step=56}}
| {{UDnote|fifth=34|step=56}}
|-
|-
| style="text-align:center;" | 57
| 57
| style="text-align:right;" | 1200
| 1200.00
| {{UDnote|step=57}}
| {{UDnote|step=57}}
| {{UDnote|fifth=34|step=57}}
| {{UDnote|fifth=34|step=57}}
Line 316: Line 316:
== Scales ==
== Scales ==


2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3MOS of type 18L 21s (augene)
* 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene)


[[Category:Heinz]]
[[Category:Heinz]]
[[Category:Mothra]]
[[Category:Mothra]]
[[Category:Todo:add rank 2 temperaments table]]
[[Category:Todo:add rank 2 temperaments table]]

Revision as of 09:26, 14 August 2024

← 56edo 57edo 58edo →
Prime factorization 3 × 19
Step size 21.0526 ¢ 
Fifth 33\57 (694.737 ¢) (→ 11\19)
Semitones (A1:m2) 3:6 (63.16 ¢ : 126.3 ¢)
Dual sharp fifth 34\57 (715.789 ¢)
Dual flat fifth 33\57 (694.737 ¢) (→ 11\19)
Dual major 2nd 10\57 (210.526 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

57edo can be used to tune the mothra temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57edo is that it has a 5-limit part consisting of three rings of 19edo, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46 & 57 temperament heinz.

5-limit commas: 81/80, 3125/3072

7-limit commas: 81/80, 3125/3072, 1029/1024

11-limit commas: 99/98, 385/384, 441/440, 625/616

Odd harmonics

Approximation of odd harmonics in 57edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -7.22 -7.37 -0.40 +6.62 -3.95 +1.58 +6.47 +0.31 -2.78 -7.62 +3.30
Relative (%) -34.3 -35.0 -1.9 +31.4 -18.8 +7.5 +30.7 +1.5 -13.2 -36.2 +15.7
Steps
(reduced)
90
(33)
132
(18)
160
(46)
181
(10)
197
(26)
211
(40)
223
(52)
233
(5)
242
(14)
250
(22)
258
(30)

Intervals

# Cents Ups and Downs Notation
(Flat Fifth 11\19)
Ups and Downs Notation
(Sharp Fifth 34\57)
0 0.00 D D
1 21.05 ^D, ^E♭♭♭ ^D, E♭
2 42.11 vD♯, vE♭♭ ^^D, ^E♭
3 63.16 D♯, E♭♭ ^3D, ^^E♭
4 84.21 ^D♯, ^E♭♭ ^4D, ^3E♭
5 105.26 vD𝄪, vE♭ ^5D, ^4E♭
6 126.32 D𝄪, E♭ v4D♯, v5E
7 147.37 ^D𝄪, ^E♭ v3D♯, v4E
8 168.42 vD♯𝄪, vE vvD♯, v3E
9 189.47 E vD♯, vvE
10 210.53 ^E, ^F♭♭ D♯, vE
11 231.58 vE♯, vF♭ E
12 252.63 E♯, F♭ F
13 273.68 ^E♯, ^F♭ ^F, G♭
14 294.74 vE𝄪, vF ^^F, ^G♭
15 315.79 F ^3F, ^^G♭
16 336.84 ^F, ^G♭♭♭ ^4F, ^3G♭
17 357.89 vF♯, vG♭♭ ^5F, ^4G♭
18 378.95 F♯, G♭♭ v4F♯, v5G
19 400.00 ^F♯, ^G♭♭ v3F♯, v4G
20 421.05 vF𝄪, vG♭ vvF♯, v3G
21 442.11 F𝄪, G♭ vF♯, vvG
22 463.16 ^F𝄪, ^G♭ F♯, vG
23 484.21 vF♯𝄪, vG G
24 505.26 G ^G, A♭
25 526.32 ^G, ^A♭♭♭ ^^G, ^A♭
26 547.37 vG♯, vA♭♭ ^3G, ^^A♭
27 568.42 G♯, A♭♭ ^4G, ^3A♭
28 589.47 ^G♯, ^A♭♭ ^5G, ^4A♭
29 610.53 vG𝄪, vA♭ v4G♯, v5A
30 631.58 G𝄪, A♭ v3G♯, v4A
31 652.63 ^G𝄪, ^A♭ vvG♯, v3A
32 673.68 vG♯𝄪, vA vG♯, vvA
33 694.74 A G♯, vA
34 715.79 ^A, ^B♭♭♭ A
35 736.84 vA♯, vB♭♭ ^A, B♭
36 757.89 A♯, B♭♭ ^^A, ^B♭
37 778.95 ^A♯, ^B♭♭ ^3A, ^^B♭
38 800.00 vA𝄪, vB♭ ^4A, ^3B♭
39 821.05 A𝄪, B♭ ^5A, ^4B♭
40 842.11 ^A𝄪, ^B♭ v4A♯, v5B
41 863.16 vA♯𝄪, vB v3A♯, v4B
42 884.21 B vvA♯, v3B
43 905.26 ^B, ^C♭♭ vA♯, vvB
44 926.32 vB♯, vC♭ A♯, vB
45 947.37 B♯, C♭ B
46 968.42 ^B♯, ^C♭ C
47 989.47 vB𝄪, vC ^C, D♭
48 1010.53 C ^^C, ^D♭
49 1031.58 ^C, ^D♭♭♭ ^3C, ^^D♭
50 1052.63 vC♯, vD♭♭ ^4C, ^3D♭
51 1073.68 C♯, D♭♭ ^5C, ^4D♭
52 1094.74 ^C♯, ^D♭♭ v4C♯, v5D
53 1115.79 vC𝄪, vD♭ v3C♯, v4D
54 1136.84 C𝄪, D♭ vvC♯, v3D
55 1157.89 ^C𝄪, ^D♭ vC♯, vvD
56 1178.95 vC♯𝄪, vD C♯, vD
57 1200.00 D D

Scales

  • 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene)