57edo: Difference between revisions
Jump to navigation
Jump to search
m →Scales of 57EDO: rename to just ‘scales’ |
Cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|57}} | {{EDO intro|57}} | ||
== Theory == | == Theory == | ||
57edo can be used to tune the [[mothra]] temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 [[just intonation subgroup]]. One way to describe 57edo is that it has a [[5-limit]] part consisting of three [[ring number|ring]]s of 19edo, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate [[11/8]], which is 26\57. This gives the [[19-limit]] 46 & 57 temperament [[heinz]]. | |||
[[5-limit|5-limit]] [[comma]]s: [[81/80]], [[3125/3072]] | [[5-limit|5-limit]] [[comma]]s: [[81/80]], [[3125/3072]] | ||
Line 10: | Line 11: | ||
[[11-limit|11-limit]] commas: [[99/98]], [[385/384]], [[441/440]], [[625/616]] | [[11-limit|11-limit]] commas: [[99/98]], [[385/384]], [[441/440]], [[625/616]] | ||
===Odd harmonics=== | === Odd harmonics === | ||
{{Harmonics in equal|57}} | |||
{{ | |||
==Intervals== | == Intervals == | ||
{| class="wikitable" | {| class="wikitable center-1 right-2 center-3 center-4" | ||
|- | |- | ||
! | ! # | ||
![[ | ! [[Cent]]s | ||
! [[Ups and downs notation]] ( | ! [[Ups and downs notation|Ups and Downs Notation]]<br>(Flat Fifth 11\19) | ||
! [[Ups and downs notation]] ( | ! [[Ups and downs notation|Ups and Downs Notation]]<br>(Sharp Fifth 34\57) | ||
|- | |- | ||
| 0 | |||
| 0.00 | |||
| {{UDnote|step=0}} | | {{UDnote|step=0}} | ||
| {{UDnote|fifth=34|step=0}} | | {{UDnote|fifth=34|step=0}} | ||
|- | |- | ||
| 1 | |||
| 21.05 | |||
| {{UDnote|step=1}} | | {{UDnote|step=1}} | ||
| {{UDnote|fifth=34|step=1}} | | {{UDnote|fifth=34|step=1}} | ||
|- | |- | ||
| 2 | |||
| 42.11 | |||
| {{UDnote|step=2}} | | {{UDnote|step=2}} | ||
| {{UDnote|fifth=34|step=2}} | | {{UDnote|fifth=34|step=2}} | ||
|- | |- | ||
| 3 | |||
| 63.16 | |||
| {{UDnote|step=3}} | | {{UDnote|step=3}} | ||
| {{UDnote|fifth=34|step=3}} | | {{UDnote|fifth=34|step=3}} | ||
|- | |- | ||
| 4 | |||
| 84.21 | |||
| {{UDnote|step=4}} | | {{UDnote|step=4}} | ||
| {{UDnote|fifth=34|step=4}} | | {{UDnote|fifth=34|step=4}} | ||
|- | |- | ||
| 5 | |||
| 105.26 | |||
| {{UDnote|step=5}} | | {{UDnote|step=5}} | ||
| {{UDnote|fifth=34|step=5}} | | {{UDnote|fifth=34|step=5}} | ||
|- | |- | ||
| 6 | |||
| 126.32 | |||
| {{UDnote|step=6}} | | {{UDnote|step=6}} | ||
| {{UDnote|fifth=34|step=6}} | | {{UDnote|fifth=34|step=6}} | ||
|- | |- | ||
| 7 | |||
| 147.37 | |||
| {{UDnote|step=7}} | | {{UDnote|step=7}} | ||
| {{UDnote|fifth=34|step=7}} | | {{UDnote|fifth=34|step=7}} | ||
|- | |- | ||
| 8 | |||
| 168.42 | |||
| {{UDnote|step=8}} | | {{UDnote|step=8}} | ||
| {{UDnote|fifth=34|step=8}} | | {{UDnote|fifth=34|step=8}} | ||
|- | |- | ||
| 9 | |||
| 189.47 | |||
| {{UDnote|step=9}} | | {{UDnote|step=9}} | ||
| {{UDnote|fifth=34|step=9}} | | {{UDnote|fifth=34|step=9}} | ||
|- | |- | ||
| 10 | |||
| 210.53 | |||
| {{UDnote|step=10}} | | {{UDnote|step=10}} | ||
| {{UDnote|fifth=34|step=10}} | | {{UDnote|fifth=34|step=10}} | ||
|- | |- | ||
| 11 | |||
| 231.58 | |||
| {{UDnote|step=11}} | | {{UDnote|step=11}} | ||
| {{UDnote|fifth=34|step=11}} | | {{UDnote|fifth=34|step=11}} | ||
|- | |- | ||
| 12 | |||
| 252.63 | |||
| {{UDnote|step=12}} | | {{UDnote|step=12}} | ||
| {{UDnote|fifth=34|step=12}} | | {{UDnote|fifth=34|step=12}} | ||
|- | |- | ||
| 13 | |||
| 273.68 | |||
| {{UDnote|step=13}} | | {{UDnote|step=13}} | ||
| {{UDnote|fifth=34|step=13}} | | {{UDnote|fifth=34|step=13}} | ||
|- | |- | ||
| 14 | |||
| 294.74 | |||
| {{UDnote|step=14}} | | {{UDnote|step=14}} | ||
| {{UDnote|fifth=34|step=14}} | | {{UDnote|fifth=34|step=14}} | ||
|- | |- | ||
| 15 | |||
| 315.79 | |||
| {{UDnote|step=15}} | | {{UDnote|step=15}} | ||
| {{UDnote|fifth=34|step=15}} | | {{UDnote|fifth=34|step=15}} | ||
|- | |- | ||
| 16 | |||
| 336.84 | |||
| {{UDnote|step=16}} | | {{UDnote|step=16}} | ||
| {{UDnote|fifth=34|step=16}} | | {{UDnote|fifth=34|step=16}} | ||
|- | |- | ||
| 17 | |||
| 357.89 | |||
| {{UDnote|step=17}} | | {{UDnote|step=17}} | ||
| {{UDnote|fifth=34|step=17}} | | {{UDnote|fifth=34|step=17}} | ||
|- | |- | ||
| 18 | |||
| 378.95 | |||
| {{UDnote|step=18}} | | {{UDnote|step=18}} | ||
| {{UDnote|fifth=34|step=18}} | | {{UDnote|fifth=34|step=18}} | ||
|- | |- | ||
| 19 | |||
| 400.00 | |||
| {{UDnote|step=19}} | | {{UDnote|step=19}} | ||
| {{UDnote|fifth=34|step=19}} | | {{UDnote|fifth=34|step=19}} | ||
|- | |- | ||
| 20 | |||
| 421.05 | |||
| {{UDnote|step=20}} | | {{UDnote|step=20}} | ||
| {{UDnote|fifth=34|step=20}} | | {{UDnote|fifth=34|step=20}} | ||
|- | |- | ||
| 21 | |||
| 442.11 | |||
| {{UDnote|step=21}} | | {{UDnote|step=21}} | ||
| {{UDnote|fifth=34|step=21}} | | {{UDnote|fifth=34|step=21}} | ||
|- | |- | ||
| 22 | |||
| 463.16 | |||
| {{UDnote|step=22}} | | {{UDnote|step=22}} | ||
| {{UDnote|fifth=34|step=22}} | | {{UDnote|fifth=34|step=22}} | ||
|- | |- | ||
| 23 | |||
| 484.21 | |||
| {{UDnote|step=23}} | | {{UDnote|step=23}} | ||
| {{UDnote|fifth=34|step=23}} | | {{UDnote|fifth=34|step=23}} | ||
|- | |- | ||
| 24 | |||
| 505.26 | |||
| {{UDnote|step=24}} | | {{UDnote|step=24}} | ||
| {{UDnote|fifth=34|step=24}} | | {{UDnote|fifth=34|step=24}} | ||
|- | |- | ||
| 25 | |||
| 526.32 | |||
| {{UDnote|step=25}} | | {{UDnote|step=25}} | ||
| {{UDnote|fifth=34|step=25}} | | {{UDnote|fifth=34|step=25}} | ||
|- | |- | ||
| 26 | |||
| 547.37 | |||
| {{UDnote|step=26}} | | {{UDnote|step=26}} | ||
| {{UDnote|fifth=34|step=26}} | | {{UDnote|fifth=34|step=26}} | ||
|- | |- | ||
| 27 | |||
| 568.42 | |||
| {{UDnote|step=27}} | | {{UDnote|step=27}} | ||
| {{UDnote|fifth=34|step=27}} | | {{UDnote|fifth=34|step=27}} | ||
|- | |- | ||
| 28 | |||
| 589.47 | |||
| {{UDnote|step=28}} | | {{UDnote|step=28}} | ||
| {{UDnote|fifth=34|step=28}} | | {{UDnote|fifth=34|step=28}} | ||
|- | |- | ||
| 29 | |||
| 610.53 | |||
| {{UDnote|step=29}} | | {{UDnote|step=29}} | ||
| {{UDnote|fifth=34|step=29}} | | {{UDnote|fifth=34|step=29}} | ||
|- | |- | ||
| 30 | |||
| 631.58 | |||
| {{UDnote|step=30}} | | {{UDnote|step=30}} | ||
| {{UDnote|fifth=34|step=30}} | | {{UDnote|fifth=34|step=30}} | ||
|- | |- | ||
| 31 | |||
| 652.63 | |||
| {{UDnote|step=31}} | | {{UDnote|step=31}} | ||
| {{UDnote|fifth=34|step=31}} | | {{UDnote|fifth=34|step=31}} | ||
|- | |- | ||
| 32 | |||
| 673.68 | |||
| {{UDnote|step=32}} | | {{UDnote|step=32}} | ||
| {{UDnote|fifth=34|step=32}} | | {{UDnote|fifth=34|step=32}} | ||
|- | |- | ||
| 33 | |||
| 694.74 | |||
| {{UDnote|step=33}} | | {{UDnote|step=33}} | ||
| {{UDnote|fifth=34|step=33}} | | {{UDnote|fifth=34|step=33}} | ||
|- | |- | ||
| 34 | |||
| 715.79 | |||
| {{UDnote|step=34}} | | {{UDnote|step=34}} | ||
| {{UDnote|fifth=34|step=34}} | | {{UDnote|fifth=34|step=34}} | ||
|- | |- | ||
| 35 | |||
| 736.84 | |||
| {{UDnote|step=35}} | | {{UDnote|step=35}} | ||
| {{UDnote|fifth=34|step=35}} | | {{UDnote|fifth=34|step=35}} | ||
|- | |- | ||
| 36 | |||
| 757.89 | |||
| {{UDnote|step=36}} | | {{UDnote|step=36}} | ||
| {{UDnote|fifth=34|step=36}} | | {{UDnote|fifth=34|step=36}} | ||
|- | |- | ||
| 37 | |||
| 778.95 | |||
| {{UDnote|step=37}} | | {{UDnote|step=37}} | ||
| {{UDnote|fifth=34|step=37}} | | {{UDnote|fifth=34|step=37}} | ||
|- | |- | ||
| 38 | |||
| 800.00 | |||
| {{UDnote|step=38}} | | {{UDnote|step=38}} | ||
| {{UDnote|fifth=34|step=38}} | | {{UDnote|fifth=34|step=38}} | ||
|- | |- | ||
| 39 | |||
| 821.05 | |||
| {{UDnote|step=39}} | | {{UDnote|step=39}} | ||
| {{UDnote|fifth=34|step=39}} | | {{UDnote|fifth=34|step=39}} | ||
|- | |- | ||
| 40 | |||
| 842.11 | |||
| {{UDnote|step=40}} | | {{UDnote|step=40}} | ||
| {{UDnote|fifth=34|step=40}} | | {{UDnote|fifth=34|step=40}} | ||
|- | |- | ||
| 41 | |||
| 863.16 | |||
| {{UDnote|step=41}} | | {{UDnote|step=41}} | ||
| {{UDnote|fifth=34|step=41}} | | {{UDnote|fifth=34|step=41}} | ||
|- | |- | ||
| 42 | |||
| 884.21 | |||
| {{UDnote|step=42}} | | {{UDnote|step=42}} | ||
| {{UDnote|fifth=34|step=42}} | | {{UDnote|fifth=34|step=42}} | ||
|- | |- | ||
| 43 | |||
| 905.26 | |||
| {{UDnote|step=43}} | | {{UDnote|step=43}} | ||
| {{UDnote|fifth=34|step=43}} | | {{UDnote|fifth=34|step=43}} | ||
|- | |- | ||
| 44 | |||
| 926.32 | |||
| {{UDnote|step=44}} | | {{UDnote|step=44}} | ||
| {{UDnote|fifth=34|step=44}} | | {{UDnote|fifth=34|step=44}} | ||
|- | |- | ||
| 45 | |||
| 947.37 | |||
| {{UDnote|step=45}} | | {{UDnote|step=45}} | ||
| {{UDnote|fifth=34|step=45}} | | {{UDnote|fifth=34|step=45}} | ||
|- | |- | ||
| 46 | |||
| 968.42 | |||
| {{UDnote|step=46}} | | {{UDnote|step=46}} | ||
| {{UDnote|fifth=34|step=46}} | | {{UDnote|fifth=34|step=46}} | ||
|- | |- | ||
| 47 | |||
| 989.47 | |||
| {{UDnote|step=47}} | | {{UDnote|step=47}} | ||
| {{UDnote|fifth=34|step=47}} | | {{UDnote|fifth=34|step=47}} | ||
|- | |- | ||
| 48 | |||
| 1010.53 | |||
| {{UDnote|step=48}} | | {{UDnote|step=48}} | ||
| {{UDnote|fifth=34|step=48}} | | {{UDnote|fifth=34|step=48}} | ||
|- | |- | ||
| 49 | |||
| 1031.58 | |||
| {{UDnote|step=49}} | | {{UDnote|step=49}} | ||
| {{UDnote|fifth=34|step=49}} | | {{UDnote|fifth=34|step=49}} | ||
|- | |- | ||
| 50 | |||
| 1052.63 | |||
| {{UDnote|step=50}} | | {{UDnote|step=50}} | ||
| {{UDnote|fifth=34|step=50}} | | {{UDnote|fifth=34|step=50}} | ||
|- | |- | ||
| 51 | |||
| 1073.68 | |||
| {{UDnote|step=51}} | | {{UDnote|step=51}} | ||
| {{UDnote|fifth=34|step=51}} | | {{UDnote|fifth=34|step=51}} | ||
|- | |- | ||
| 52 | |||
| 1094.74 | |||
| {{UDnote|step=52}} | | {{UDnote|step=52}} | ||
| {{UDnote|fifth=34|step=52}} | | {{UDnote|fifth=34|step=52}} | ||
|- | |- | ||
| 53 | |||
| 1115.79 | |||
| {{UDnote|step=53}} | | {{UDnote|step=53}} | ||
| {{UDnote|fifth=34|step=53}} | | {{UDnote|fifth=34|step=53}} | ||
|- | |- | ||
| 54 | |||
| 1136.84 | |||
| {{UDnote|step=54}} | | {{UDnote|step=54}} | ||
| {{UDnote|fifth=34|step=54}} | | {{UDnote|fifth=34|step=54}} | ||
|- | |- | ||
| 55 | |||
| 1157.89 | |||
| {{UDnote|step=55}} | | {{UDnote|step=55}} | ||
| {{UDnote|fifth=34|step=55}} | | {{UDnote|fifth=34|step=55}} | ||
|- | |- | ||
| 56 | |||
| 1178.95 | |||
| {{UDnote|step=56}} | | {{UDnote|step=56}} | ||
| {{UDnote|fifth=34|step=56}} | | {{UDnote|fifth=34|step=56}} | ||
|- | |- | ||
| 57 | |||
| 1200.00 | |||
| {{UDnote|step=57}} | | {{UDnote|step=57}} | ||
| {{UDnote|fifth=34|step=57}} | | {{UDnote|fifth=34|step=57}} | ||
Line 316: | Line 316: | ||
== Scales == | == Scales == | ||
2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - | * 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene) | ||
[[Category:Heinz]] | [[Category:Heinz]] | ||
[[Category:Mothra]] | [[Category:Mothra]] | ||
[[Category:Todo:add rank 2 temperaments table]] | [[Category:Todo:add rank 2 temperaments table]] |
Revision as of 09:26, 14 August 2024
← 56edo | 57edo | 58edo → |
Theory
57edo can be used to tune the mothra temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57edo is that it has a 5-limit part consisting of three rings of 19edo, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46 & 57 temperament heinz.
5-limit commas: 81/80, 3125/3072
7-limit commas: 81/80, 3125/3072, 1029/1024
11-limit commas: 99/98, 385/384, 441/440, 625/616
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.22 | -7.37 | -0.40 | +6.62 | -3.95 | +1.58 | +6.47 | +0.31 | -2.78 | -7.62 | +3.30 |
Relative (%) | -34.3 | -35.0 | -1.9 | +31.4 | -18.8 | +7.5 | +30.7 | +1.5 | -13.2 | -36.2 | +15.7 | |
Steps (reduced) |
90 (33) |
132 (18) |
160 (46) |
181 (10) |
197 (26) |
211 (40) |
223 (52) |
233 (5) |
242 (14) |
250 (22) |
258 (30) |
Intervals
# | Cents | Ups and Downs Notation (Flat Fifth 11\19) |
Ups and Downs Notation (Sharp Fifth 34\57) |
---|---|---|---|
0 | 0.00 | D | D |
1 | 21.05 | ^D, ^E♭♭♭ | ^D, E♭ |
2 | 42.11 | vD♯, vE♭♭ | ^^D, ^E♭ |
3 | 63.16 | D♯, E♭♭ | ^3D, ^^E♭ |
4 | 84.21 | ^D♯, ^E♭♭ | ^4D, ^3E♭ |
5 | 105.26 | vD𝄪, vE♭ | ^5D, ^4E♭ |
6 | 126.32 | D𝄪, E♭ | v4D♯, v5E |
7 | 147.37 | ^D𝄪, ^E♭ | v3D♯, v4E |
8 | 168.42 | vD♯𝄪, vE | vvD♯, v3E |
9 | 189.47 | E | vD♯, vvE |
10 | 210.53 | ^E, ^F♭♭ | D♯, vE |
11 | 231.58 | vE♯, vF♭ | E |
12 | 252.63 | E♯, F♭ | F |
13 | 273.68 | ^E♯, ^F♭ | ^F, G♭ |
14 | 294.74 | vE𝄪, vF | ^^F, ^G♭ |
15 | 315.79 | F | ^3F, ^^G♭ |
16 | 336.84 | ^F, ^G♭♭♭ | ^4F, ^3G♭ |
17 | 357.89 | vF♯, vG♭♭ | ^5F, ^4G♭ |
18 | 378.95 | F♯, G♭♭ | v4F♯, v5G |
19 | 400.00 | ^F♯, ^G♭♭ | v3F♯, v4G |
20 | 421.05 | vF𝄪, vG♭ | vvF♯, v3G |
21 | 442.11 | F𝄪, G♭ | vF♯, vvG |
22 | 463.16 | ^F𝄪, ^G♭ | F♯, vG |
23 | 484.21 | vF♯𝄪, vG | G |
24 | 505.26 | G | ^G, A♭ |
25 | 526.32 | ^G, ^A♭♭♭ | ^^G, ^A♭ |
26 | 547.37 | vG♯, vA♭♭ | ^3G, ^^A♭ |
27 | 568.42 | G♯, A♭♭ | ^4G, ^3A♭ |
28 | 589.47 | ^G♯, ^A♭♭ | ^5G, ^4A♭ |
29 | 610.53 | vG𝄪, vA♭ | v4G♯, v5A |
30 | 631.58 | G𝄪, A♭ | v3G♯, v4A |
31 | 652.63 | ^G𝄪, ^A♭ | vvG♯, v3A |
32 | 673.68 | vG♯𝄪, vA | vG♯, vvA |
33 | 694.74 | A | G♯, vA |
34 | 715.79 | ^A, ^B♭♭♭ | A |
35 | 736.84 | vA♯, vB♭♭ | ^A, B♭ |
36 | 757.89 | A♯, B♭♭ | ^^A, ^B♭ |
37 | 778.95 | ^A♯, ^B♭♭ | ^3A, ^^B♭ |
38 | 800.00 | vA𝄪, vB♭ | ^4A, ^3B♭ |
39 | 821.05 | A𝄪, B♭ | ^5A, ^4B♭ |
40 | 842.11 | ^A𝄪, ^B♭ | v4A♯, v5B |
41 | 863.16 | vA♯𝄪, vB | v3A♯, v4B |
42 | 884.21 | B | vvA♯, v3B |
43 | 905.26 | ^B, ^C♭♭ | vA♯, vvB |
44 | 926.32 | vB♯, vC♭ | A♯, vB |
45 | 947.37 | B♯, C♭ | B |
46 | 968.42 | ^B♯, ^C♭ | C |
47 | 989.47 | vB𝄪, vC | ^C, D♭ |
48 | 1010.53 | C | ^^C, ^D♭ |
49 | 1031.58 | ^C, ^D♭♭♭ | ^3C, ^^D♭ |
50 | 1052.63 | vC♯, vD♭♭ | ^4C, ^3D♭ |
51 | 1073.68 | C♯, D♭♭ | ^5C, ^4D♭ |
52 | 1094.74 | ^C♯, ^D♭♭ | v4C♯, v5D |
53 | 1115.79 | vC𝄪, vD♭ | v3C♯, v4D |
54 | 1136.84 | C𝄪, D♭ | vvC♯, v3D |
55 | 1157.89 | ^C𝄪, ^D♭ | vC♯, vvD |
56 | 1178.95 | vC♯𝄪, vD | C♯, vD |
57 | 1200.00 | D | D |
Scales
- 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene)