Semaphoresmic family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Update keys
Normalize generators
Line 14: Line 14:
: Angle (7/6, 5/4) = 90 degrees
: Angle (7/6, 5/4) = 90 degrees


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/6 = 250.3846, ~5/4 = 379.7035
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/4 = 949.6154, ~5/4 = 379.7035


{{Optimal ET sequence|legend=1| 4, 5, 9, 10, 14c, 15, 19 }}
{{Optimal ET sequence|legend=1| 4, 5, 9, 10, 14c, 15, 19 }}
Line 27: Line 27:
{{Mapping|legend=1| 1 0 2 2 5 | 0 2 0 1 1 | 0 0 1 0 -1 }}
{{Mapping|legend=1| 1 0 2 2 5 | 0 2 0 1 1 | 0 0 1 0 -1 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/6 = 248.2710, ~5/4 = 390.6487
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/4 = 951.7290, ~5/4 = 390.6487


{{Optimal ET sequence|legend=1| 4, 5, 9, 10, 15, 19, 24, 34 }}
{{Optimal ET sequence|legend=1| 4, 5, 9, 10, 15, 19, 24, 34 }}
Line 40: Line 40:
Mapping: {{mapping| 1 0 2 2 5 -1 | 0 2 0 1 1 3 | 0 0 1 0 -1 1 }}
Mapping: {{mapping| 1 0 2 2 5 -1 | 0 2 0 1 1 3 | 0 0 1 0 -1 1 }}


Optimal tuning (POTE): ~2 = 1\1, ~7/6 = 248.7559, ~5/4 = 389.5957
Optimal tuning (POTE): ~2 = 1\1, ~7/4 = 951.2441, ~5/4 = 389.5957


{{Optimal ET sequence|legend=1| 5, 9, 10, 15, 19, 24, 34 }}
{{Optimal ET sequence|legend=1| 5, 9, 10, 15, 19, 24, 34 }}
Line 60: Line 60:


=== 13-limit  ===
=== 13-limit  ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Line 74: Line 73:


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Semiphore]]
[[Category:Semiphore family| ]] <!-- main article -->
[[Category:Rank 3]]
[[Category:Rank 3]]

Revision as of 05:46, 5 August 2023

Semiphore family is a rank-3 temperament family of 2.3.5.7 that tempers out 49/48 and thereby identifies the septimal minor third, 7/6, and the septimal whole tone, 8/7. It also splits the fourth into two of these intervals; hence the name, which sounds like "semi-fourth". Related to this is the 2.3.7-limit 49/48 temperament called "semaphore", and the 2.3.5.7 49/48 and 81/80 temperament called "godzilla".

Semiphore

Subgroup: 2.3.5.7

Comma list: 49/48

Mapping[1 0 2 2], 0 2 0 1], 0 0 1 0]]

mapping generators: ~2, ~7/4, ~5

Lattice basis:

7/6 length = 0.7627, 5/4 length = 2.322
Angle (7/6, 5/4) = 90 degrees

Optimal tuning (POTE): ~2 = 1\1, ~7/4 = 949.6154, ~5/4 = 379.7035

Optimal ET sequence4, 5, 9, 10, 14c, 15, 19

Badness: 0.116 × 10-3

Selenium

Subgroup: 2.3.5.7.11

Comma list: 49/48, 56/55

Mapping[1 0 2 2 5], 0 2 0 1 1], 0 0 1 0 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~7/4 = 951.7290, ~5/4 = 390.6487

Optimal ET sequence4, 5, 9, 10, 15, 19, 24, 34

Badness: 0.665 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 91/90

Mapping: [1 0 2 2 5 -1], 0 2 0 1 1 3], 0 0 1 0 -1 1]]

Optimal tuning (POTE): ~2 = 1\1, ~7/4 = 951.2441, ~5/4 = 389.5957

Optimal ET sequence5, 9, 10, 15, 19, 24, 34

Badness: 0.787 × 10-3

Negric

Subgroup: 2.3.5.7.11

Comma list: 49/48, 225/224

Mapping[1 2 2 3 0], 0 -4 3 -2 0], 0 0 0 0 1]]

Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 125.6080, ~11/8 = 539.2342

Optimal ET sequence9, 10, 19, 29, 38d, 67cde

Badness: 1.087 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 65/64, 91/90

Mapping: [1 2 2 3 0 4], 0 -4 3 -2 0 -3], 0 0 0 0 1 0]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 125.5675, ~11/8 = 538.4845

Optimal ET sequence9, 10, 19, 29, 38df, 67cdef

Badness: 0.8076 × 10-3