Garischismic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Expand on the intro and update keys
Move cotoneum here as it's a strong extension; normalize the mapping of gary
Line 6: Line 6:


* [[Garibaldi]] → [[Schismatic family #Garibaldi|Schismatic family]] (+225/224)
* [[Garibaldi]] → [[Schismatic family #Garibaldi|Schismatic family]] (+225/224)
* [[Cotoneum]] → [[Hemimage temperaments #Cotoneum|Hemimage temperaments]] (+10976/10935)
* ''[[Newt]]'' → [[Breedsmic temperaments #Newt|Breedsmic temperaments]] (+2401/2400)
* ''[[Newt]]'' → [[Breedsmic temperaments #Newt|Breedsmic temperaments]] (+2401/2400)
* ''[[Sextile]]'' → [[Landscape microtemperaments #Sextile|Landscape microtemperaments]] (+250047/250000)
* ''[[Sextile]]'' → [[Landscape microtemperaments #Sextile|Landscape microtemperaments]] (+250047/250000)
Line 21: Line 20:
[[Comma list]]: 33554432/33480783
[[Comma list]]: 33554432/33480783


{{Mapping|legend=2| 1 2 -3 | 0 -1 14 }}
{{Mapping|legend=2| 1 0 25 | 0 1 -14 }}
 
: sval mapping generators: ~2, ~3


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 702.2079
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 702.2079
Line 34: Line 35:
Comma list: 19712/19683, 41503/41472
Comma list: 19712/19683, 41503/41472


Sval mapping: {{mapping| 1 2 -3 13 | 0 -1 14 -23 }}
Sval mapping: {{mapping| 1 0 25 -33 | 0 1 -14 23 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.2292
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.2292
Line 41: Line 42:


Badness: 0.00731
Badness: 0.00731
== Cotoneum ==
{{Main| Cotoneum }}
The cotoneum temperament tempers out 10976/10935 ([[hemimage comma]]), and 823543/819200 ([[quince comma]]) in addition to the garischisma. This temperament can be described as 41 & 217, and is supported by [[176edo|176-]], [[217edo|217-]], and [[258edo]]. 5/4 is found at the septuple diminished octave (C-Cbbbbbbb) or equivalently at the perfect fourth minus four Pyth. commas. It can be extended to the 11-, 13-, 17-, and 19-limit by adding 441/440, 364/363, 595/594, and 343/342 to the comma list in this order.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 10976/10935, 823543/819200
{{Mapping|legend=1| 1 0 80 25 | 0 1 -49 -14 }}
{{Multival|legend=1| 1 -49 -14 -80 -25 105 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 702.317
{{Optimal ET sequence|legend=1| 41, 135c, 176, 217, 258, 475 }}
[[Badness]]: 0.105632
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 441/440, 10976/10935, 16384/16335
Mapping: {{mapping| 1 0 80 25 -33 | 0 1 -49 -14 23 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.303
{{Optimal ET sequence|legend=1| 41, 135c, 176, 217 }}
Badness: 0.050966
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 3584/3575, 10976/10935
Mapping: {{mapping| 1 0 80 25 -33 -93 | 0 1 -49 -14 23 61 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.306
{{Optimal ET sequence|legend=1| 41, 176, 217 }}
Badness: 0.036951
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 3584/3575, 8281/8262
Mapping: {{mapping| 1 0 80 25 -33 -93 -137 | 0 1 -49 -14 23 61 89 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.307
{{Optimal ET sequence|legend=1| 41, 176, 217 }}
Badness: 0.029495
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 343/342, 364/363, 441/440, 595/594, 1216/1215, 1729/1728
Mapping: {{mapping| 1 0 80 25 -33 -93 -137 74 | 0 1 -49 -14 23 61 89 -44 }}
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.308
{{Optimal ET sequence|legend=1| 41, 176, 217 }}
Badness: 0.021811


== World calendar ==
== World calendar ==

Revision as of 09:01, 5 July 2023

The garischismic clan of temperaments tempers out the garischisma, [25 -14 0 -1 = 33554432/33480783. The head of this clan is gary, which is generated by a perfect fifth. Two apotomes i.e. 14 fifths octave reduced make a septimal major second (8/7). Equivalently stated, the harmonic seventh (7/4) is found at the double diminished octave (C-Cbb).

The second comma of the comma list determines which full 7-limit family member we are looking at. Garibaldi adds the schisma, or equivalently 225/224 and finds 5/4 at the diminished fourth. Cotoneum adds 10976/10935 and finds 5/4 at the septuple diminished octave. These are generated by the fifth as is gary.

Newt adds 2401/2400, slicing the fifth in two. Sextile adds 250047/250000 with a 1/3-octave period. Trident adds 6144/6125, slicing the twelfth in three. Satin adds 2100875/2097152, slicing the fourth in three. Vulture adds 4375/4374, slicing the twelfth in four. World calendar adds 390625/388962 with a 1/4-octave period as well as a bisect generator. Quintagar adds 3136/3125, slicing the fourth in five. Paramity adds 65625/65536, slicing the eleventh in five.

Gary

Subgroup: 2.3.7

Comma list: 33554432/33480783

Sval mapping[1 0 25], 0 1 -14]]

sval mapping generators: ~2, ~3

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.2079

Optimal ET sequence12, 29, 41, 94, 135, 364, 499, 634, 3035bd, 3669bd, 4303bd, 4937bbdd, 5571bbdd

Badness: 0.0135

2.3.7.11 subgroup

Subgroup: 2.3.7.11

Comma list: 19712/19683, 41503/41472

Sval mapping: [1 0 25 -33], 0 1 -14 23]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.2292

Optimal ET sequence12e, 41, 94, 135, 716, 851, 986, 1121, 1256

Badness: 0.00731

Cotoneum

The cotoneum temperament tempers out 10976/10935 (hemimage comma), and 823543/819200 (quince comma) in addition to the garischisma. This temperament can be described as 41 & 217, and is supported by 176-, 217-, and 258edo. 5/4 is found at the septuple diminished octave (C-Cbbbbbbb) or equivalently at the perfect fourth minus four Pyth. commas. It can be extended to the 11-, 13-, 17-, and 19-limit by adding 441/440, 364/363, 595/594, and 343/342 to the comma list in this order.

Subgroup: 2.3.5.7

Comma list: 10976/10935, 823543/819200

Mapping[1 0 80 25], 0 1 -49 -14]]

Wedgie⟨⟨ 1 -49 -14 -80 -25 105 ]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.317

Optimal ET sequence41, 135c, 176, 217, 258, 475

Badness: 0.105632

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 10976/10935, 16384/16335

Mapping: [1 0 80 25 -33], 0 1 -49 -14 23]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.303

Optimal ET sequence41, 135c, 176, 217

Badness: 0.050966

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 3584/3575, 10976/10935

Mapping: [1 0 80 25 -33 -93], 0 1 -49 -14 23 61]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.306

Optimal ET sequence41, 176, 217

Badness: 0.036951

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 441/440, 595/594, 3584/3575, 8281/8262

Mapping: [1 0 80 25 -33 -93 -137], 0 1 -49 -14 23 61 89]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.307

Optimal ET sequence41, 176, 217

Badness: 0.029495

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 343/342, 364/363, 441/440, 595/594, 1216/1215, 1729/1728

Mapping: [1 0 80 25 -33 -93 -137 74], 0 1 -49 -14 23 61 89 -44]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.308

Optimal ET sequence41, 176, 217

Badness: 0.021811

World calendar

World calendar tempers out the dimcomp comma and the garischisma, and can be described as the 12 & 364 temperament. The name derives from a certain calendar layout by the same name.

Subgroup: 2.3.5.7

Comma list: 390625/388962, 33554432/33480783

Mapping[4 1 -44 86], 0 2 -13 -28]]

mapping generators: ~25/21, ~91125/57344

Optimal tuning (POTE): ~25/21 = 1\4, ~91125/57344 = 801.0947

Optimal ET sequence12, …, 352, 364

Badness: 0.292

2.3.5.7.17 subgroup

Subgroup: 2.3.5.7.17

Comma list: 2025/2023, 24576/24565, 390625/388962

Sval mapping: [4 1 -44 86 3], 0 2 -13 -28 5]]

Optimal tuning (POTE): ~25/21 = 1\4, ~27/17 = 801.0908

Optimal ET sequence12, …, 352, 364

Badness: 0.0743

2.3.5.7.17.19 subgroup

Subgroup: 2.3.5.7.17.19

Comma list: 1216/1215, 2025/2023, 8075/8064, 48013/48000

Sval mapping: [4 1 -44 86 3 25], 0 2 -13 -28 5 -3]]

Optimal tuning (POTE): ~25/21 = 1\4, ~27/17 = 801.0945

Optimal ET sequence12, …, 352, 364

Badness: 0.0378