Porcupine family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Yourmusic Productions (talk | contribs)
m Pourcup: fix formatting
Update keys; POTE -> CTE; review comma lists and GPV sequences (2/2)
Line 26: Line 26:
[[Mapping]]: [{{val| 1 2 3 }}, {{val| 0 -3 -5 }}]
[[Mapping]]: [{{val| 1 2 3 }}, {{val| 0 -3 -5 }}]


: Mapping generators: ~2, ~10/9
: mapping generators: ~2, ~10/9


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 164.1659
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 164.1659
Line 63: Line 63:
Sval mapping: [{{val| 1 5 8 8 2 }}, {{val| 0 -6 -10 -8 3 }}]
Sval mapping: [{{val| 1 5 8 8 2 }}, {{val| 0 -6 -10 -8 3 }}]


: Sval mapping generators: ~2, ~65/44
: sval mapping generators: ~2, ~65/44


Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094
Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094
Line 209: Line 209:


== Hystrix ==
== Hystrix ==
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo|15EDO]]. They can try the even sharper fifth of hystrix in [[68edo|68EDO]] and see how that suits.
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 36/35, 160/147
[[Comma list]]: 36/35, 160/147
Line 219: Line 219:
{{Multival|legend=1| 3 5 1 1 -7 -12 }}
{{Multival|legend=1| 3 5 1 1 -7 -12 }}


[[POTE generator]]: ~8/7 = 158.868
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 165.1845


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~8/7 = {{monzo| 3/5 0 -1/5 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
: Eigenmonzos (unchanged intervals): 2, 5/4
: [[Eigenmonzo basis]]: 2.5


{{Val list|legend=1| 7, 8d, 15d }}
{{Val list|legend=1| 7, 8d, 15d }}
Line 236: Line 236:
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}]
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}]


POTE generator: ~8/7 = 158.750
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.7684


Optimal GPV sequence: {{val list| 7, 8d, 15d }}
Optimal GPV sequence: {{val list| 7, 8d, 15d }}
Line 243: Line 243:


== Porky ==
== Porky ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 225/224, 250/243
[[Comma list]]: 225/224, 250/243
Line 251: Line 251:
{{Multival|legend=1| 3 5 16 1 17 23 }}
{{Multival|legend=1| 3 5 16 1 17 23 }}


[[POTE generator]]: ~10/9 = 164.412
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 164.3913


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }}
: Eigenmonzos (unchanged intervals): 2, 7/5
: [[Eigenmonzo basis]]: 2.7/5


{{Val list|legend=1| 7d, 15d, 22, 29, 51, 73c }}
{{Val list|legend=1| 7d, 15d, 22, 29, 51, 73c }}
Line 268: Line 268:
Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}]
Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}]


POTE generator: ~10/9 = 164.552
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.3207


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }}
* 11-odd-limit: ~11/10 = {{monzo| 2/11 0 1/11 -1/11 }}
: Eigenmonzos (unchanged intervals): 2, 7/5
: Eigenmonzo basis: 2.7/5


Optimal GPV sequence: {{val list| 7d, 15d, 22, 29, 51, 73ce }}
Optimal GPV sequence: {{val list| 7d, 15d, 22, 51 }}


Badness: 0.027268
Badness: 0.027268
Line 285: Line 285:
Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}]
Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}]


POTE generator: ~10/9 = 164.953
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.4782


Optimal GPV sequence: {{val list| 7d, 22, 29, 51f, 80cdeff }}
Optimal GPV sequence: {{val list| 7d, 22, 29, 51f, 80cdeff }}
Line 292: Line 292:


== Coendou ==
== Coendou ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 250/243, 525/512
[[Comma list]]: 250/243, 525/512
Line 300: Line 300:
{{Multival|legend=1| 3 5 -13 1 -29 -44 }}
{{Multival|legend=1| 3 5 -13 1 -29 -44 }}


[[POTE generator]]: ~10/9 = 166.041
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 166.0938


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }}
: Eigenmonzos (unchanged intervals): 2, 3
: [[Eigenmonzo basis]]: 2.3


{{Val list|legend=1| 7, 29, 65c, 94cd }}
{{Val list|legend=1| 7, 22d, 29, 65c, 94cd }}


[[Badness]]: 0.118344
[[Badness]]: 0.118344
Line 317: Line 317:
Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}]
Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}]


POTE generator: ~10/9 = 165.981
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 165.9246


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~10/9 = {{monzo| 2/3 -1/3 }}
* 11-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
: Eigenmonzos (unchanged intervals): 2, 3
: Eigenmonzo basis: 2.3


Optimal GPV sequence: {{val list| 7, 29, 65ce, 94cde }}
Optimal GPV sequence: {{val list| 7, 22d, 29, 65ce }}


Badness: 0.049669
Badness: 0.049669
Line 334: Line 334:
Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}]
Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}]


POTE generator: ~10/9 = 165.974
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 166.0459


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~10/9 = {{monzo| 2/3 -1/3 }}
* 13- and 15-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
: Eigenmonzos (unchanged intervals): 2, 3
: Eigenmonzo basis: 2.3


Optimal GPV sequence: {{val list| 7, 29, 65cef, 94cdef }}
Optimal GPV sequence: {{val list| 7, 22d, 29, 65cef }}


Badness: 0.030233
Badness: 0.030233


== Hedgehog ==
== Hedgehog ==
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. 22EDO provides the obvious tuning, but if you are looking for an alternative, you could try the {{val| 146 232 338 411 }} val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 245/243
[[Comma list]]: 50/49, 245/243


[[Mapping]]: [{{val| 2 1 1 2 }}, {{val| 0 3 5 5 }}]
[[Mapping]]: [{{val| 2 1 1 2 }}, {{val| 0 3 5 5 }}]
: mapping generators: ~7/5, ~9/7


{{Multival|legend=1| 6 10 10 2 -1 -5 }}
{{Multival|legend=1| 6 10 10 2 -1 -5 }}


[[POTE generator]]: ~9/7 = 435.648
[[Optimal tuning]] ([[CTE]]): ~7/5 = 1\2, ~9/7 = 435.2580


{{Val list|legend=1| 8d, 14c, 22, 146bccdd }}
{{Val list|legend=1| 8d, 14c, 22 }}


[[Badness]]: 0.043983
[[Badness]]: 0.043983
Line 368: Line 370:
Mapping: [{{val| 2 1 1 2 4 }}, {{val| 0 3 5 5 4 }}]
Mapping: [{{val| 2 1 1 2 4 }}, {{val| 0 3 5 5 4 }}]


POTE generator: ~9/7 = 435.386
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.5281


Optimal GPV sequence: {{val list| 8d, 14c, 22, 58ce, 80ce, 102cde }}
Optimal GPV sequence: {{val list| 8d, 14c, 22, 58ce }}


Badness: 0.023095
Badness: 0.023095
Line 381: Line 383:
Mapping: [{{val| 2 1 1 2 4 3 }}, {{val| 0 3 5 5 4 6 }}]
Mapping: [{{val| 2 1 1 2 4 3 }}, {{val| 0 3 5 5 4 6 }}]


POTE generator: ~9/7 = 435.861
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 436.3087


Optimal GPV sequence: {{val list| 8d, 14cf, 22 }}
Optimal GPV sequence: {{val list| 8d, 14cf, 22 }}
Line 394: Line 396:
Mapping: [{{val| 2 1 1 2 4 6 }}, {{val| 0 3 5 5 4 2 }}]
Mapping: [{{val| 2 1 1 2 4 6 }}, {{val| 0 3 5 5 4 2 }}]


POTE generator: ~9/7 = 437.078
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.1856


Optimal GPV sequence: {{val list| 14c, 22f }}
Optimal GPV sequence: {{val list| 14c, 22f }}
Line 407: Line 409:
Mapping: [{{val| 2 1 1 2 12 }}, {{val| 0 3 5 5 -7 }}]
Mapping: [{{val| 2 1 1 2 12 }}, {{val| 0 3 5 5 -7 }}]


POTE generator: ~9/7 = 435.425
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.3289


Optimal GPV sequence: {{val list| 22, 80c, 102cd, 124cd }}
Optimal GPV sequence: {{val list| 22 }}


Badness: 0.068406
Badness: 0.068406


; Music
; Music
[http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3 Phobos Light] by [[Chris Vaisvil]] in Hedgehog[14] [[hedgehog14|tuned]] to 22EDO.
* [http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3 ''Phobos Light''] by [[Chris Vaisvil]] in [[hedgehog14|hedgehog[14]]] to 22edo.


== Nautilus ==
== Nautilus ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 49/48, 250/243
[[Comma list]]: 49/48, 250/243


[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -6 -10 -3 }}]
[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -6 -10 -3 }}]
: mapping generators: ~2, ~21/20


{{Multival|legend=1| 6 10 3 2 -12 -21 }}
{{Multival|legend=1| 6 10 3 2 -12 -21 }}


[[POTE generator]]: ~21/20 = 82.505
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~21/20 = 81.9143


{{Val list|legend=1| 14c, 15, 29, 44d, 59d, 73cd, 102cd }}
{{Val list|legend=1| 14c, 15, 29 }}


[[Badness]]: 0.057420
[[Badness]]: 0.057420
Line 438: Line 442:
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -6 -10 -3 -8 }}]
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -6 -10 -3 -8 }}]


POTE generator: ~21/20 = 82.504
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.8017


Optimal GPV sequence: {{val list| 14c, 15, 29, 44d, 59d, 73cde, 102cde }}
Optimal GPV sequence: {{val list| 14c, 15, 29 }}


Badness: 0.026023
Badness: 0.026023
Line 451: Line 455:
Mapping: [{{val| 1 2 3 3 4 5 }}, {{val| 0 -6 -10 -3 -8 -19 }}]
Mapping: [{{val| 1 2 3 3 4 5 }}, {{val| 0 -6 -10 -3 -8 -19 }}]


POTE generator: ~21/20 = 82.530
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9123


Optimal GPV sequence: {{val list| 14cf, 15, 29, 44d, 59df, 73cde, 102cde }}
Optimal GPV sequence: {{val list| 14cf, 15, 29 }}


Badness: 0.022285
Badness: 0.022285
Line 464: Line 468:
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -6 -10 -3 -8 -4 }}]
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -6 -10 -3 -8 -4 }}]


POTE generator: ~21/20 = 81.759
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 82.0342


Optimal GPV sequence: {{val list| 14c, 15, 29f, 44df }}
Optimal GPV sequence: {{val list| 14c, 15 }}


Badness: 0.029816
Badness: 0.029816


; Music
; Music
[http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3 Nautilus Reverie] by [[Igliashon Jones|Igliashon Calvin Jones-Coolidge]]
* [http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3 ''Nautilus Reverie''] by [[Igliashon Jones|Igliashon Calvin Jones-Coolidge]]


== Ammonite ==
== Ammonite ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 250/243, 686/675
[[Comma list]]: 250/243, 686/675


[[Mapping]]: [{{val| 1 5 8 10 }}, {{val| 0 -9 -15 -19 }}]
[[Mapping]]: [{{val| 1 5 8 10 }}, {{val| 0 -9 -15 -19 }}]
: mapping generators: ~2, ~9/7


{{Multival|legend=1| 9 15 19 3 5 2 }}
{{Multival|legend=1| 9 15 19 3 5 2 }}


[[POTE generator]]: ~9/7 = 454.448
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~9/7 = 454.5500


{{Val list|legend=1| 29, 37, 66 }}
{{Val list|legend=1| 8d, 21cd, 29, 37, 66 }}


[[Badness]]: 0.107686
[[Badness]]: 0.107686
Line 495: Line 501:
Mapping: [{{val| 1 5 8 10 8 }}, {{val| 0 -9 -15 -19 -12 }}]
Mapping: [{{val| 1 5 8 10 8 }}, {{val| 0 -9 -15 -19 -12 }}]


POTE generator: ~9/7 = 454.512
Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5050


Optimal GPV sequence: {{val list| 29, 37, 66 }}
Optimal GPV sequence: {{val list| 8d, 21cde, 29, 37, 66 }}


Badness: 0.045694
Badness: 0.045694
Line 508: Line 514:
Mapping: [{{val| 1 5 8 10 8 9 }}, {{val| 0 -9 -15 -19 -12 -14 }}]
Mapping: [{{val| 1 5 8 10 8 9 }}, {{val| 0 -9 -15 -19 -12 -14 }}]


POTE generator: ~13/10 = 454.529
Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 454.4798


Optimal GPV sequence: {{val list| 29, 37, 66 }}
Optimal GPV sequence: {{val list| 8d, 21cdef, 29, 37, 66 }}


Badness: 0.027168
Badness: 0.027168


== Ceratitid ==
== Ceratitid ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 250/243, 1728/1715
[[Comma list]]: 250/243, 1728/1715


[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -9 -15 -4 }}]
[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -9 -15 -4 }}]
: mapping generators: ~2, ~36/35


{{Multival|legend=1| 9 15 4 3 -19 -33 }}
{{Multival|legend=1| 9 15 4 3 -19 -33 }}


[[POTE generator]]: ~36/35 = 54.384
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~36/35 = 54.8040


{{Val list|legend=1| 1c, 21c, 22 }}
{{Val list|legend=1| 1c, 21c, 22 }}
Line 536: Line 544:
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -9 -15 -4 -12 }}]
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -9 -15 -4 -12 }}]


POTE generator: ~36/35 = 54.376
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.7019


Optimal GPV sequence: {{val list| 1ce, 21ce, 22 }}
Optimal GPV sequence: {{val list| 1ce, 21ce, 22 }}
Line 549: Line 557:
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -9 -15 -4 -12 -7 }}]
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -9 -15 -4 -12 -7 }}]


POTE generator: ~36/35 = 54.665
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.5751


Optimal GPV sequence: {{val list| 1ce, 21cef, 22 }}
Optimal GPV sequence: {{val list| 1ce, 21cef, 22 }}

Revision as of 10:44, 2 April 2023

The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is [1 -5 3, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.

The second comma of the normal comma list defines which 7-limit family member we are looking at. That means

All these 7-limit extensions notably share the same 2.3.5.11 subgroup, porkypine.

Temperaments discussed elsewhere include opossum, oxygen, and jamesbond.

Porcupine

Subgroup: 2.3.5

Comma list: 250/243

Mapping: [1 2 3], 0 -3 -5]]

mapping generators: ~2, ~10/9

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 164.1659

Tuning ranges:

  • 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
  • 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
  • 5-odd-limit diamond monotone and tradeoff: ~10/9 = [157.821, 166.015]

Template:Val list

Badness: 0.030778

2.3.5.11 subgroup (porkypine)

Subgroup: 2.3.5.11

Comma list: 55/54, 100/99

Sval mapping: [1 2 3 4], 0 -3 -5 -4]]

Gencom mapping: [1 2 3 0 4], 0 -3 -5 0 -4]]

Gencom: [2 10/9; 55/54, 100/99]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.8867

Optimal GPV sequence: Template:Val list

Badness: 0.0097

Undecimation

Subgroup: 2.3.5.11.13

Comma list: 55/54, 100/99, 512/507

Sval mapping: [1 5 8 8 2], 0 -6 -10 -8 3]]

sval mapping generators: ~2, ~65/44

Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094

Optimal GPV sequence: Template:Val list

Badness: 0.0305

Septimal porcupine

Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.

Subgroup: 2.3.5.7

Comma list: 64/63, 250/243

Mapping: [1 2 3 2], 0 -3 -5 6]]

Wedgie⟨⟨ 3 5 -6 1 -18 -28 ]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 163.2032

Minimax tuning:

Eigenmonzo basis: 2.5
Eigenmonzo basis: 2.9/7

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
  • 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
  • 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
  • 7- and 9-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 163.636]

Template:Val list

Badness: 0.041057

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 100/99

Mapping: [1 2 3 2 4], 0 -3 -5 6 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.1055

Minimax tuning:

  • 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12
Eigenmonzo basis: 2.9/7

Tuning ranges:

  • 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
  • 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
  • 11-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]

Optimal GPV sequence: Template:Val list

Badness: 0.021562

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 55/54, 64/63, 66/65

Mapping: [1 2 3 2 4 4], 0 -3 -5 6 -4 -2]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.4425

Minimax tuning:

  • 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4
Eigenmonzo basis: 2.11

Tuning ranges:

  • 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
  • 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
  • 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
  • 13-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
  • 15-odd-limit diamond monotone and tradeoff: ~11/10 = 163.636

Optimal GPV sequence: Template:Val list

Badness: 0.021276

Porcupinefish

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 100/99

Mapping: [1 2 3 2 4 6], 0 -3 -5 6 -4 -17]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 162.6361

Minimax tuning:

  • 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13
Eigenmonzo basis: 2.13/11

Tuning ranges:

  • 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
  • 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
  • 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
  • 13-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 162.162]
  • 15-odd-limit diamond monotone and tradeoff: ~10/9 = 162.162

Optimal GPV sequence: Template:Val list

Badness: 0.025314

Pourcup

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 100/99, 196/195

Mapping: [1 2 3 2 4 1], 0 -3 -5 6 -4 20]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.3781

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14
Eigenmonzo basis: 2.13/7

Optimal GPV sequence: Template:Val list

Badness: 0.035130

Porkpie

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 100/99

Mapping: [1 2 3 2 4 3], 0 -3 -5 6 -4 5]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.6778

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12
Eigenmonzo basis: 2.9/7

Optimal GPV sequence: Template:Val list

Badness: 0.026043

Hystrix

Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15edo. They can try the even sharper fifth of hystrix in 68edo and see how that suits.

Subgroup: 2.3.5.7

Comma list: 36/35, 160/147

Mapping: [1 2 3 3], 0 -3 -5 -1]]

Wedgie⟨⟨ 3 5 1 1 -7 -12 ]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 165.1845

Minimax tuning:

Eigenmonzo basis: 2.5

Template:Val list

Badness: 0.044944

11-limit

Subgroup: 2.3.5.7.11

Comma list: 22/21, 36/35, 80/77

Mapping: [1 2 3 3 4], 0 -3 -5 -1 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.7684

Optimal GPV sequence: Template:Val list

Badness: 0.026790

Porky

Subgroup: 2.3.5.7

Comma list: 225/224, 250/243

Mapping: [1 2 3 5], 0 -3 -5 -16]]

Wedgie⟨⟨ 3 5 16 1 17 23 ]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 164.3913

Minimax tuning:

Eigenmonzo basis: 2.7/5

Template:Val list

Badness: 0.054389

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 225/224

Mapping: [1 2 3 5 4], 0 -3 -5 -16 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.3207

Minimax tuning:

  • 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11
Eigenmonzo basis: 2.7/5

Optimal GPV sequence: Template:Val list

Badness: 0.027268

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/64, 91/90, 100/99

Mapping: [1 2 3 5 4 3], 0 -3 -5 -16 -4 5]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.4782

Optimal GPV sequence: Template:Val list

Badness: 0.026543

Coendou

Subgroup: 2.3.5.7

Comma list: 250/243, 525/512

Mapping: [1 2 3 1], 0 -3 -5 13]]

Wedgie⟨⟨ 3 5 -13 1 -29 -44 ]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 166.0938

Minimax tuning:

Eigenmonzo basis: 2.3

Template:Val list

Badness: 0.118344

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 525/512

Mapping: [1 2 3 1 4], 0 -3 -5 13 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 165.9246

Minimax tuning:

  • 11-odd-limit: ~11/10 = [2/3 -1/3
Eigenmonzo basis: 2.3

Optimal GPV sequence: Template:Val list

Badness: 0.049669

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/64, 100/99, 105/104

Mapping: [1 2 3 1 4 3], 0 -3 -5 13 -4 5]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 166.0459

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [2/3 -1/3
Eigenmonzo basis: 2.3

Optimal GPV sequence: Template:Val list

Badness: 0.030233

Hedgehog

Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the 146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22.

Subgroup: 2.3.5.7

Comma list: 50/49, 245/243

Mapping: [2 1 1 2], 0 3 5 5]]

mapping generators: ~7/5, ~9/7

Wedgie⟨⟨ 6 10 10 2 -1 -5 ]]

Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.2580

Template:Val list

Badness: 0.043983

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 99/98

Mapping: [2 1 1 2 4], 0 3 5 5 4]]

Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.5281

Optimal GPV sequence: Template:Val list

Badness: 0.023095

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 99/98

Mapping: [2 1 1 2 4 3], 0 3 5 5 4 6]]

Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 436.3087

Optimal GPV sequence: Template:Val list

Badness: 0.021516

Urchin

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 50/49, 55/54, 66/65

Mapping: [2 1 1 2 4 6], 0 3 5 5 4 2]]

Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.1856

Optimal GPV sequence: Template:Val list

Badness: 0.025233

Hedgepig

Subgroup: 2.3.5.7.11

Comma list: 50/49, 245/243, 385/384

Mapping: [2 1 1 2 12], 0 3 5 5 -7]]

Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.3289

Optimal GPV sequence: Template:Val list

Badness: 0.068406

Music

Nautilus

Subgroup: 2.3.5.7

Comma list: 49/48, 250/243

Mapping: [1 2 3 3], 0 -6 -10 -3]]

mapping generators: ~2, ~21/20

Wedgie⟨⟨ 6 10 3 2 -12 -21 ]]

Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9143

Template:Val list

Badness: 0.057420

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 55/54, 245/242

Mapping: [1 2 3 3 4], 0 -6 -10 -3 -8]]

Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.8017

Optimal GPV sequence: Template:Val list

Badness: 0.026023

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 55/54, 91/90, 100/99

Mapping: [1 2 3 3 4 5], 0 -6 -10 -3 -8 -19]]

Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9123

Optimal GPV sequence: Template:Val list

Badness: 0.022285

Belauensis

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 49/48, 55/54, 66/65

Mapping: [1 2 3 3 4 4], 0 -6 -10 -3 -8 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 82.0342

Optimal GPV sequence: Template:Val list

Badness: 0.029816

Music

Ammonite

Subgroup: 2.3.5.7

Comma list: 250/243, 686/675

Mapping: [1 5 8 10], 0 -9 -15 -19]]

mapping generators: ~2, ~9/7

Wedgie⟨⟨ 9 15 19 3 5 2 ]]

Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5500

Template:Val list

Badness: 0.107686

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 686/675

Mapping: [1 5 8 10 8], 0 -9 -15 -19 -12]]

Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5050

Optimal GPV sequence: Template:Val list

Badness: 0.045694

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 91/90, 100/99, 169/168

Mapping: [1 5 8 10 8 9], 0 -9 -15 -19 -12 -14]]

Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 454.4798

Optimal GPV sequence: Template:Val list

Badness: 0.027168

Ceratitid

Subgroup: 2.3.5.7

Comma list: 250/243, 1728/1715

Mapping: [1 2 3 3], 0 -9 -15 -4]]

mapping generators: ~2, ~36/35

Wedgie⟨⟨ 9 15 4 3 -19 -33 ]]

Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.8040

Template:Val list

Badness: 0.115304

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 352/343

Mapping: [1 2 3 3 4], 0 -9 -15 -4 -12]]

Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.7019

Optimal GPV sequence: Template:Val list

Badness: 0.051319

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/63, 100/99, 352/343

Mapping: [1 2 3 3 4 4], 0 -9 -15 -4 -12 -7]]

Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.5751

Optimal GPV sequence: Template:Val list

Badness: 0.044739