Porcupine family: Difference between revisions
m →Pourcup: fix formatting |
Update keys; POTE -> CTE; review comma lists and GPV sequences (2/2) |
||
Line 26: | Line 26: | ||
[[Mapping]]: [{{val| 1 2 3 }}, {{val| 0 -3 -5 }}] | [[Mapping]]: [{{val| 1 2 3 }}, {{val| 0 -3 -5 }}] | ||
: | : mapping generators: ~2, ~10/9 | ||
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 164.1659 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 164.1659 | ||
Line 63: | Line 63: | ||
Sval mapping: [{{val| 1 5 8 8 2 }}, {{val| 0 -6 -10 -8 3 }}] | Sval mapping: [{{val| 1 5 8 8 2 }}, {{val| 0 -6 -10 -8 3 }}] | ||
: | : sval mapping generators: ~2, ~65/44 | ||
Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094 | Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094 | ||
Line 209: | Line 209: | ||
== Hystrix == | == Hystrix == | ||
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo | Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 36/35, 160/147 | [[Comma list]]: 36/35, 160/147 | ||
Line 219: | Line 219: | ||
{{Multival|legend=1| 3 5 1 1 -7 -12 }} | {{Multival|legend=1| 3 5 1 1 -7 -12 }} | ||
[[ | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 165.1845 | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~ | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }} | ||
: | : [[Eigenmonzo basis]]: 2.5 | ||
{{Val list|legend=1| 7, 8d, 15d }} | {{Val list|legend=1| 7, 8d, 15d }} | ||
Line 236: | Line 236: | ||
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}] | Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -3 -5 -1 -4 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.7684 | |||
Optimal GPV sequence: {{val list| 7, 8d, 15d }} | Optimal GPV sequence: {{val list| 7, 8d, 15d }} | ||
Line 243: | Line 243: | ||
== Porky == | == Porky == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 225/224, 250/243 | [[Comma list]]: 225/224, 250/243 | ||
Line 251: | Line 251: | ||
{{Multival|legend=1| 3 5 16 1 17 23 }} | {{Multival|legend=1| 3 5 16 1 17 23 }} | ||
[[ | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 164.3913 | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }} | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }} | ||
: | : [[Eigenmonzo basis]]: 2.7/5 | ||
{{Val list|legend=1| 7d, 15d, 22, 29, 51, 73c }} | {{Val list|legend=1| 7d, 15d, 22, 29, 51, 73c }} | ||
Line 268: | Line 268: | ||
Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}] | Mapping: [{{val| 1 2 3 5 4 }}, {{val| 0 -3 -5 -16 -4 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.3207 | |||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit: ~10 | * 11-odd-limit: ~11/10 = {{monzo| 2/11 0 1/11 -1/11 }} | ||
: | : Eigenmonzo basis: 2.7/5 | ||
Optimal GPV sequence: {{val list| 7d, 15d, 22 | Optimal GPV sequence: {{val list| 7d, 15d, 22, 51 }} | ||
Badness: 0.027268 | Badness: 0.027268 | ||
Line 285: | Line 285: | ||
Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}] | Mapping: [{{val| 1 2 3 5 4 3 }}, {{val| 0 -3 -5 -16 -4 5 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.4782 | |||
Optimal GPV sequence: {{val list| 7d, 22, 29, 51f, 80cdeff }} | Optimal GPV sequence: {{val list| 7d, 22, 29, 51f, 80cdeff }} | ||
Line 292: | Line 292: | ||
== Coendou == | == Coendou == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 250/243, 525/512 | [[Comma list]]: 250/243, 525/512 | ||
Line 300: | Line 300: | ||
{{Multival|legend=1| 3 5 -13 1 -29 -44 }} | {{Multival|legend=1| 3 5 -13 1 -29 -44 }} | ||
[[ | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 166.0938 | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }} | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }} | ||
: | : [[Eigenmonzo basis]]: 2.3 | ||
{{Val list|legend=1| 7, 29, 65c, 94cd }} | {{Val list|legend=1| 7, 22d, 29, 65c, 94cd }} | ||
[[Badness]]: 0.118344 | [[Badness]]: 0.118344 | ||
Line 317: | Line 317: | ||
Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}] | Mapping: [{{val| 1 2 3 1 4 }}, {{val| 0 -3 -5 13 -4 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 165.9246 | |||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit: ~10 | * 11-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }} | ||
: | : Eigenmonzo basis: 2.3 | ||
Optimal GPV sequence: {{val list| 7, 29, 65ce | Optimal GPV sequence: {{val list| 7, 22d, 29, 65ce }} | ||
Badness: 0.049669 | Badness: 0.049669 | ||
Line 334: | Line 334: | ||
Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}] | Mapping: [{{val| 1 2 3 1 4 3 }}, {{val| 0 -3 -5 13 -4 5 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 166.0459 | |||
Minimax tuning: | Minimax tuning: | ||
* 13- and 15-odd-limit: ~10 | * 13- and 15-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }} | ||
: | : Eigenmonzo basis: 2.3 | ||
Optimal GPV sequence: {{val list| 7, 29, 65cef | Optimal GPV sequence: {{val list| 7, 22d, 29, 65cef }} | ||
Badness: 0.030233 | Badness: 0.030233 | ||
== Hedgehog == | == Hedgehog == | ||
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. | Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 50/49, 245/243 | [[Comma list]]: 50/49, 245/243 | ||
[[Mapping]]: [{{val| 2 1 1 2 }}, {{val| 0 3 5 5 }}] | [[Mapping]]: [{{val| 2 1 1 2 }}, {{val| 0 3 5 5 }}] | ||
: mapping generators: ~7/5, ~9/7 | |||
{{Multival|legend=1| 6 10 10 2 -1 -5 }} | {{Multival|legend=1| 6 10 10 2 -1 -5 }} | ||
[[ | [[Optimal tuning]] ([[CTE]]): ~7/5 = 1\2, ~9/7 = 435.2580 | ||
{{Val list|legend=1| 8d, 14c, 22 | {{Val list|legend=1| 8d, 14c, 22 }} | ||
[[Badness]]: 0.043983 | [[Badness]]: 0.043983 | ||
Line 368: | Line 370: | ||
Mapping: [{{val| 2 1 1 2 4 }}, {{val| 0 3 5 5 4 }}] | Mapping: [{{val| 2 1 1 2 4 }}, {{val| 0 3 5 5 4 }}] | ||
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.5281 | |||
Optimal GPV sequence: {{val list| 8d, 14c, 22, 58ce | Optimal GPV sequence: {{val list| 8d, 14c, 22, 58ce }} | ||
Badness: 0.023095 | Badness: 0.023095 | ||
Line 381: | Line 383: | ||
Mapping: [{{val| 2 1 1 2 4 3 }}, {{val| 0 3 5 5 4 6 }}] | Mapping: [{{val| 2 1 1 2 4 3 }}, {{val| 0 3 5 5 4 6 }}] | ||
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 436.3087 | |||
Optimal GPV sequence: {{val list| 8d, 14cf, 22 }} | Optimal GPV sequence: {{val list| 8d, 14cf, 22 }} | ||
Line 394: | Line 396: | ||
Mapping: [{{val| 2 1 1 2 4 6 }}, {{val| 0 3 5 5 4 2 }}] | Mapping: [{{val| 2 1 1 2 4 6 }}, {{val| 0 3 5 5 4 2 }}] | ||
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.1856 | |||
Optimal GPV sequence: {{val list| 14c, 22f }} | Optimal GPV sequence: {{val list| 14c, 22f }} | ||
Line 407: | Line 409: | ||
Mapping: [{{val| 2 1 1 2 12 }}, {{val| 0 3 5 5 -7 }}] | Mapping: [{{val| 2 1 1 2 12 }}, {{val| 0 3 5 5 -7 }}] | ||
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.3289 | |||
Optimal GPV sequence: {{val list| 22 | Optimal GPV sequence: {{val list| 22 }} | ||
Badness: 0.068406 | Badness: 0.068406 | ||
; Music | ; Music | ||
[http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3 Phobos Light] by [[Chris Vaisvil]] in | * [http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3 ''Phobos Light''] by [[Chris Vaisvil]] in [[hedgehog14|hedgehog[14]]] to 22edo. | ||
== Nautilus == | == Nautilus == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 49/48, 250/243 | [[Comma list]]: 49/48, 250/243 | ||
[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -6 -10 -3 }}] | [[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -6 -10 -3 }}] | ||
: mapping generators: ~2, ~21/20 | |||
{{Multival|legend=1| 6 10 3 2 -12 -21 }} | {{Multival|legend=1| 6 10 3 2 -12 -21 }} | ||
[[ | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~21/20 = 81.9143 | ||
{{Val list|legend=1| 14c, 15, 29 | {{Val list|legend=1| 14c, 15, 29 }} | ||
[[Badness]]: 0.057420 | [[Badness]]: 0.057420 | ||
Line 438: | Line 442: | ||
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -6 -10 -3 -8 }}] | Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -6 -10 -3 -8 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.8017 | |||
Optimal GPV sequence: {{val list| 14c, 15, 29 | Optimal GPV sequence: {{val list| 14c, 15, 29 }} | ||
Badness: 0.026023 | Badness: 0.026023 | ||
Line 451: | Line 455: | ||
Mapping: [{{val| 1 2 3 3 4 5 }}, {{val| 0 -6 -10 -3 -8 -19 }}] | Mapping: [{{val| 1 2 3 3 4 5 }}, {{val| 0 -6 -10 -3 -8 -19 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9123 | |||
Optimal GPV sequence: {{val list| 14cf, 15, 29 | Optimal GPV sequence: {{val list| 14cf, 15, 29 }} | ||
Badness: 0.022285 | Badness: 0.022285 | ||
Line 464: | Line 468: | ||
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -6 -10 -3 -8 -4 }}] | Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -6 -10 -3 -8 -4 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 82.0342 | |||
Optimal GPV sequence: {{val list| 14c, 15 | Optimal GPV sequence: {{val list| 14c, 15 }} | ||
Badness: 0.029816 | Badness: 0.029816 | ||
; Music | ; Music | ||
[http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3 Nautilus Reverie] by [[Igliashon Jones|Igliashon Calvin Jones-Coolidge]] | * [http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3 ''Nautilus Reverie''] by [[Igliashon Jones|Igliashon Calvin Jones-Coolidge]] | ||
== Ammonite == | == Ammonite == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 250/243, 686/675 | [[Comma list]]: 250/243, 686/675 | ||
[[Mapping]]: [{{val| 1 5 8 10 }}, {{val| 0 -9 -15 -19 }}] | [[Mapping]]: [{{val| 1 5 8 10 }}, {{val| 0 -9 -15 -19 }}] | ||
: mapping generators: ~2, ~9/7 | |||
{{Multival|legend=1| 9 15 19 3 5 2 }} | {{Multival|legend=1| 9 15 19 3 5 2 }} | ||
[[ | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~9/7 = 454.5500 | ||
{{Val list|legend=1| 29, 37, 66 }} | {{Val list|legend=1| 8d, 21cd, 29, 37, 66 }} | ||
[[Badness]]: 0.107686 | [[Badness]]: 0.107686 | ||
Line 495: | Line 501: | ||
Mapping: [{{val| 1 5 8 10 8 }}, {{val| 0 -9 -15 -19 -12 }}] | Mapping: [{{val| 1 5 8 10 8 }}, {{val| 0 -9 -15 -19 -12 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5050 | |||
Optimal GPV sequence: {{val list| 29, 37, 66 }} | Optimal GPV sequence: {{val list| 8d, 21cde, 29, 37, 66 }} | ||
Badness: 0.045694 | Badness: 0.045694 | ||
Line 508: | Line 514: | ||
Mapping: [{{val| 1 5 8 10 8 9 }}, {{val| 0 -9 -15 -19 -12 -14 }}] | Mapping: [{{val| 1 5 8 10 8 9 }}, {{val| 0 -9 -15 -19 -12 -14 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 454.4798 | |||
Optimal GPV sequence: {{val list| 29, 37, 66 }} | Optimal GPV sequence: {{val list| 8d, 21cdef, 29, 37, 66 }} | ||
Badness: 0.027168 | Badness: 0.027168 | ||
== Ceratitid == | == Ceratitid == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 250/243, 1728/1715 | [[Comma list]]: 250/243, 1728/1715 | ||
[[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -9 -15 -4 }}] | [[Mapping]]: [{{val| 1 2 3 3 }}, {{val| 0 -9 -15 -4 }}] | ||
: mapping generators: ~2, ~36/35 | |||
{{Multival|legend=1| 9 15 4 3 -19 -33 }} | {{Multival|legend=1| 9 15 4 3 -19 -33 }} | ||
[[ | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~36/35 = 54.8040 | ||
{{Val list|legend=1| 1c, 21c, 22 }} | {{Val list|legend=1| 1c, 21c, 22 }} | ||
Line 536: | Line 544: | ||
Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -9 -15 -4 -12 }}] | Mapping: [{{val| 1 2 3 3 4 }}, {{val| 0 -9 -15 -4 -12 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.7019 | |||
Optimal GPV sequence: {{val list| 1ce, 21ce, 22 }} | Optimal GPV sequence: {{val list| 1ce, 21ce, 22 }} | ||
Line 549: | Line 557: | ||
Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -9 -15 -4 -12 -7 }}] | Mapping: [{{val| 1 2 3 3 4 4 }}, {{val| 0 -9 -15 -4 -12 -7 }}] | ||
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.5751 | |||
Optimal GPV sequence: {{val list| 1ce, 21cef, 22 }} | Optimal GPV sequence: {{val list| 1ce, 21cef, 22 }} |
Revision as of 10:44, 2 April 2023
The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is [1 -5 3⟩, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.
The second comma of the normal comma list defines which 7-limit family member we are looking at. That means
- 64/63, the archytas comma, for septimal porcupine,
- 36/35, the septimal quarter tone, for hystrix,
- 50/49, the jubilisma, for hedgehog, and
- 49/48, the slendro diesis, for nautilus.
All these 7-limit extensions notably share the same 2.3.5.11 subgroup, porkypine.
Temperaments discussed elsewhere include opossum, oxygen, and jamesbond.
Porcupine
Subgroup: 2.3.5
Comma list: 250/243
Mapping: [⟨1 2 3], ⟨0 -3 -5]]
- mapping generators: ~2, ~10/9
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 164.1659
- 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
- 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 5-odd-limit diamond monotone and tradeoff: ~10/9 = [157.821, 166.015]
Badness: 0.030778
2.3.5.11 subgroup (porkypine)
Subgroup: 2.3.5.11
Comma list: 55/54, 100/99
Sval mapping: [⟨1 2 3 4], ⟨0 -3 -5 -4]]
Gencom mapping: [⟨1 2 3 0 4], ⟨0 -3 -5 0 -4]]
Gencom: [2 10/9; 55/54, 100/99]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.8867
Optimal GPV sequence: Template:Val list
Badness: 0.0097
Undecimation
Subgroup: 2.3.5.11.13
Comma list: 55/54, 100/99, 512/507
Sval mapping: [⟨1 5 8 8 2], ⟨0 -6 -10 -8 3]]
- sval mapping generators: ~2, ~65/44
Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094
Optimal GPV sequence: Template:Val list
Badness: 0.0305
Septimal porcupine
Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7
Comma list: 64/63, 250/243
Mapping: [⟨1 2 3 2], ⟨0 -3 -5 6]]
Wedgie: ⟨⟨ 3 5 -6 1 -18 -28 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 163.2032
- 7-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- Eigenmonzo basis: 2.5
- 9-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis: 2.9/7
- 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 163.636]
Badness: 0.041057
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Mapping: [⟨1 2 3 2 4], ⟨0 -3 -5 6 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.1055
Minimax tuning:
- 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis: 2.9/7
Tuning ranges:
- 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
- 11-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
Optimal GPV sequence: Template:Val list
Badness: 0.021562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Mapping: [⟨1 2 3 2 4 4], ⟨0 -3 -5 6 -4 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.4425
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4⟩
- Eigenmonzo basis: 2.11
Tuning ranges:
- 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
- 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
- 13-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
- 15-odd-limit diamond monotone and tradeoff: ~11/10 = 163.636
Optimal GPV sequence: Template:Val list
Badness: 0.021276
Porcupinefish
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 100/99
Mapping: [⟨1 2 3 2 4 6], ⟨0 -3 -5 6 -4 -17]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 162.6361
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13⟩
- Eigenmonzo basis: 2.13/11
Tuning ranges:
- 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
- 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
- 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
- 13-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 162.162]
- 15-odd-limit diamond monotone and tradeoff: ~10/9 = 162.162
Optimal GPV sequence: Template:Val list
Badness: 0.025314
Pourcup
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Mapping: [⟨1 2 3 2 4 1], ⟨0 -3 -5 6 -4 20]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.3781
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14⟩
- Eigenmonzo basis: 2.13/7
Optimal GPV sequence: Template:Val list
Badness: 0.035130
Porkpie
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Mapping: [⟨1 2 3 2 4 3], ⟨0 -3 -5 6 -4 5]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.6778
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis: 2.9/7
Optimal GPV sequence: Template:Val list
Badness: 0.026043
Hystrix
Hystrix provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15edo. They can try the even sharper fifth of hystrix in 68edo and see how that suits.
Subgroup: 2.3.5.7
Comma list: 36/35, 160/147
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -1]]
Wedgie: ⟨⟨ 3 5 1 1 -7 -12 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 165.1845
- 7- and 9-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- Eigenmonzo basis: 2.5
Badness: 0.044944
11-limit
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Mapping: [⟨1 2 3 3 4], ⟨0 -3 -5 -1 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.7684
Optimal GPV sequence: Template:Val list
Badness: 0.026790
Porky
Subgroup: 2.3.5.7
Comma list: 225/224, 250/243
Mapping: [⟨1 2 3 5], ⟨0 -3 -5 -16]]
Wedgie: ⟨⟨ 3 5 16 1 17 23 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 164.3913
- 7- and 9-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
- Eigenmonzo basis: 2.7/5
Badness: 0.054389
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Mapping: [⟨1 2 3 5 4], ⟨0 -3 -5 -16 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.3207
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11⟩
- Eigenmonzo basis: 2.7/5
Optimal GPV sequence: Template:Val list
Badness: 0.027268
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Mapping: [⟨1 2 3 5 4 3], ⟨0 -3 -5 -16 -4 5]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.4782
Optimal GPV sequence: Template:Val list
Badness: 0.026543
Coendou
Subgroup: 2.3.5.7
Comma list: 250/243, 525/512
Mapping: [⟨1 2 3 1], ⟨0 -3 -5 13]]
Wedgie: ⟨⟨ 3 5 -13 1 -29 -44 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 166.0938
- 7- and 9-odd-limit: ~10/9 = [2/3 -1/3⟩
- Eigenmonzo basis: 2.3
Badness: 0.118344
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Mapping: [⟨1 2 3 1 4], ⟨0 -3 -5 13 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 165.9246
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/3 -1/3⟩
- Eigenmonzo basis: 2.3
Optimal GPV sequence: Template:Val list
Badness: 0.049669
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Mapping: [⟨1 2 3 1 4 3], ⟨0 -3 -5 13 -4 5]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 166.0459
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [2/3 -1/3⟩
- Eigenmonzo basis: 2.3
Optimal GPV sequence: Template:Val list
Badness: 0.030233
Hedgehog
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the ⟨146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22.
Subgroup: 2.3.5.7
Comma list: 50/49, 245/243
Mapping: [⟨2 1 1 2], ⟨0 3 5 5]]
- mapping generators: ~7/5, ~9/7
Wedgie: ⟨⟨ 6 10 10 2 -1 -5 ]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.2580
Badness: 0.043983
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Mapping: [⟨2 1 1 2 4], ⟨0 3 5 5 4]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.5281
Optimal GPV sequence: Template:Val list
Badness: 0.023095
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Mapping: [⟨2 1 1 2 4 3], ⟨0 3 5 5 4 6]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 436.3087
Optimal GPV sequence: Template:Val list
Badness: 0.021516
Urchin
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Mapping: [⟨2 1 1 2 4 6], ⟨0 3 5 5 4 2]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.1856
Optimal GPV sequence: Template:Val list
Badness: 0.025233
Hedgepig
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Mapping: [⟨2 1 1 2 12], ⟨0 3 5 5 -7]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.3289
Optimal GPV sequence: Template:Val list
Badness: 0.068406
- Music
- Phobos Light by Chris Vaisvil in hedgehog[14] to 22edo.
Nautilus
Subgroup: 2.3.5.7
Comma list: 49/48, 250/243
Mapping: [⟨1 2 3 3], ⟨0 -6 -10 -3]]
- mapping generators: ~2, ~21/20
Wedgie: ⟨⟨ 6 10 3 2 -12 -21 ]]
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9143
Badness: 0.057420
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Mapping: [⟨1 2 3 3 4], ⟨0 -6 -10 -3 -8]]
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.8017
Optimal GPV sequence: Template:Val list
Badness: 0.026023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Mapping: [⟨1 2 3 3 4 5], ⟨0 -6 -10 -3 -8 -19]]
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9123
Optimal GPV sequence: Template:Val list
Badness: 0.022285
Belauensis
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Mapping: [⟨1 2 3 3 4 4], ⟨0 -6 -10 -3 -8 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 82.0342
Optimal GPV sequence: Template:Val list
Badness: 0.029816
- Music
Ammonite
Subgroup: 2.3.5.7
Comma list: 250/243, 686/675
Mapping: [⟨1 5 8 10], ⟨0 -9 -15 -19]]
- mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 9 15 19 3 5 2 ]]
Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5500
Badness: 0.107686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Mapping: [⟨1 5 8 10 8], ⟨0 -9 -15 -19 -12]]
Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5050
Optimal GPV sequence: Template:Val list
Badness: 0.045694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Mapping: [⟨1 5 8 10 8 9], ⟨0 -9 -15 -19 -12 -14]]
Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 454.4798
Optimal GPV sequence: Template:Val list
Badness: 0.027168
Ceratitid
Subgroup: 2.3.5.7
Comma list: 250/243, 1728/1715
Mapping: [⟨1 2 3 3], ⟨0 -9 -15 -4]]
- mapping generators: ~2, ~36/35
Wedgie: ⟨⟨ 9 15 4 3 -19 -33 ]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.8040
Badness: 0.115304
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 352/343
Mapping: [⟨1 2 3 3 4], ⟨0 -9 -15 -4 -12]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.7019
Optimal GPV sequence: Template:Val list
Badness: 0.051319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Mapping: [⟨1 2 3 3 4 4], ⟨0 -9 -15 -4 -12 -7]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.5751
Optimal GPV sequence: Template:Val list
Badness: 0.044739