1547edo: Difference between revisions
m Cleanup |
|||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|1547}} | {{EDO intro|1547}} | ||
In the 5-limit, it supports [[gross]], which is a very high-accuracy temperament. The 118-tone maximal evenness scale produced by gross is [[concoctic]], since it uses 118\1547 as the generator. In addition, 1547edo tempers out the [[septendecima]] and thus supports the [[chlorine]] temperament in 5-limit and also in the 7-limit. 1547edo tempers out the 5-limit comma {{ | == Theory == | ||
1547edo is [[consistent]] to the [[15-odd-limit]] and is excellent in the 7-limit. It tempers out [[4375/4374]] and it is a member of the [[optimal GPV sequence]] for the rank-3 temperament associated with this comma. | |||
In the 5-limit, it supports [[gross]], which is a very high-accuracy temperament. The 118-tone [[maximal evenness]] scale produced by gross is [[concoctic]], since it uses 118\1547 as the generator. In addition, 1547edo tempers out the [[septendecima]] and thus supports the [[chlorine]] temperament in 5-limit and also in the 7-limit. 1547edo tempers out the 5-limit comma {{monzo| 236 -61 -60 }}, thus associating a stack of sixty [[15/8]]'s with [[4/3]], and sixty-one of them make [[5/4]]. | |||
In the 7-limit, it supports [[semidimi]]. Another edo which is quite strong in the 7-limit is like 1547edo is 441edo, and 1547edo thus supports the [[brahmagupta]] temperament produced by merging 441 & 1547. | In the 7-limit, it supports [[semidimi]]. Another edo which is quite strong in the 7-limit is like 1547edo is 441edo, and 1547edo thus supports the [[brahmagupta]] temperament produced by merging 441 & 1547. | ||
Line 11: | Line 12: | ||
In higher limits, it supports 91th-octave temperament [[protactinium]]. | In higher limits, it supports 91th-octave temperament [[protactinium]]. | ||
=== Prime harmonics === | |||
{{Harmonics in equal|1547}} | |||
=== Divisors === | === Divisors === | ||
1547 | 1547 has subset edos {{EDOs| 7, 13, 17, 91, 119, and 221 }}. | ||
==Regular temperament properties== | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal 8ve | ! rowspan="2" | Optimal 8ve<br>Stretch (¢) | ||
Stretch (¢) | ! colspan="2" | Tuning Error | ||
! colspan="2" |Tuning Error | |||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|2452 -1547}} | | {{monzo| 2452 -1547 }} | ||
|[{{val|1547 2542}}] | | [{{val| 1547 2542 }}] | ||
| | | -0.015 | ||
|0.015 | | 0.015 | ||
|1.99 | | 1.99 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|{{monzo|-52 -17 34}}, {{monzo|40 -56 21}} | | {{monzo| -52 -17 34 }}, {{monzo| 40 -56 21 }} | ||
|[{{val|1547 2542 3592}}] | | [{{val| 1547 2542 3592 }}] | ||
| | | -0.008 | ||
|0.017 | | 0.017 | ||
|2.14 | | 2.14 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|4375/4374, {{monzo|-1 4 11 -11}}, {{monzo|46 -14 -3 -6}} | | 4375/4374, {{monzo| -1 4 11 -11 }}, {{monzo| 46 -14 -3 -6 }} | ||
|[{{val|1547 2542 3592 4343}}] | | [{{val| 1547 2542 3592 4343 }}] | ||
| -0.007 | | -0.007 | ||
|0.014 | | 0.014 | ||
|1.86 | | 1.86 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|4375/4374, 151263/151250, 820125/819896, 2097152/2096325 | | 4375/4374, 151263/151250, 820125/819896, 2097152/2096325 | ||
|[{{val|1547 2542 3592 4343 5352}}] | | [{{val| 1547 2542 3592 4343 5352 }}] | ||
| | | -0.017 | ||
|0.024 | | 0.024 | ||
|3.10 | | 3.10 | ||
|- | |- | ||
|2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
|4375/4374, 4096/4095, 10648/10647, 91125/91091, 105644/105625 | | 4375/4374, 4096/4095, 10648/10647, 91125/91091, 105644/105625 | ||
|[{{val|1547 2542 3592 4343 5352 5725}}] | | [{{val| 1547 2542 3592 4343 5352 5725 }}] | ||
| | | -0.029 | ||
|0.034 | | 0.034 | ||
|4.42 | | 4.42 | ||
|} | |} | ||
===Rank-2 temperaments=== | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator<br>( | ! Generator<br>(Reduced) | ||
! Cents<br>( | ! Cents<br>(Reduced) | ||
! Associated<br> | ! Associated<br>Ratio | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|118\1547 | | 118\1547 | ||
|91.532 | | 91.532 | ||
|{{monzo|9 -32 18}} | | {{monzo| 9 -32 18 }} | ||
|[[Gross]] | | [[Gross]] | ||
|- | |- | ||
|1 | | 1 | ||
|579\1547 | | 579\1547 | ||
|449.127 | | 449.127 | ||
|35/27 | | 35/27 | ||
|[[Semidimi]] | | [[Semidimi]] | ||
|- | |- | ||
|7 | | 7 | ||
|670\1547<br>(7\1547) | | 670\1547<br>(7\1547) | ||
|519.715<br>(5.429) | | 519.715<br>(5.429) | ||
|27/20<br>(325/324) | | 27/20<br>(325/324) | ||
|[[Brahmagupta]] | | [[Brahmagupta]] | ||
|- | |- | ||
|13 | | 13 | ||
|642\1547<br>(47\1547) | | 642\1547<br>(47\1547) | ||
|497.996<br>(36.458) | | 497.996<br>(36.458) | ||
|4/3<br>(?) | | 4/3<br>(?) | ||
|[[Aluminium]] | | [[Aluminium]] | ||
|- | |- | ||
|17 | | 17 | ||
|321\1547<br>(48\1547) | | 321\1547<br>(48\1547) | ||
|248.998<br>(37.233) | | 248.998<br>(37.233) | ||
|{{monzo|-23 5 9 -2}}<br>(100352/98415) | | {{monzo| -23 5 9 -2 }}<br>(100352/98415) | ||
|[[Chlorine]] | | [[Chlorine]] | ||
|- | |- | ||
|91 | | 91 | ||
|642\1547<br>(13\1547) | | 642\1547<br>(13\1547) | ||
|497.996<br>(10.084) | | 497.996<br>(10.084) | ||
|4/3<br>(176/175) | | 4/3<br>(176/175) | ||
|[[Protactinium]] | | [[Protactinium]] | ||
|} | |} | ||
Revision as of 03:23, 8 January 2023
← 1546edo | 1547edo | 1548edo → |
Theory
1547edo is consistent to the 15-odd-limit and is excellent in the 7-limit. It tempers out 4375/4374 and it is a member of the optimal GPV sequence for the rank-3 temperament associated with this comma.
In the 5-limit, it supports gross, which is a very high-accuracy temperament. The 118-tone maximal evenness scale produced by gross is concoctic, since it uses 118\1547 as the generator. In addition, 1547edo tempers out the septendecima and thus supports the chlorine temperament in 5-limit and also in the 7-limit. 1547edo tempers out the 5-limit comma [236 -61 -60⟩, thus associating a stack of sixty 15/8's with 4/3, and sixty-one of them make 5/4.
In the 7-limit, it supports semidimi. Another edo which is quite strong in the 7-limit is like 1547edo is 441edo, and 1547edo thus supports the brahmagupta temperament produced by merging 441 & 1547.
In the 11-limit, it is a tuning for the rank-3 temperament heimdall.
In higher limits, it supports 91th-octave temperament protactinium.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.049 | -0.018 | +0.017 | +0.201 | +0.326 | -0.237 | +0.354 | +0.039 | -0.230 | -0.110 |
Relative (%) | +0.0 | +6.3 | -2.3 | +2.2 | +25.9 | +42.0 | -30.5 | +45.6 | +5.0 | -29.7 | -14.2 | |
Steps (reduced) |
1547 (0) |
2452 (905) |
3592 (498) |
4343 (1249) |
5352 (711) |
5725 (1084) |
6323 (135) |
6572 (384) |
6998 (810) |
7515 (1327) |
7664 (1476) |
Divisors
1547 has subset edos 7, 13, 17, 91, 119, and 221.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [2452 -1547⟩ | [⟨1547 2542]] | -0.015 | 0.015 | 1.99 |
2.3.5 | [-52 -17 34⟩, [40 -56 21⟩ | [⟨1547 2542 3592]] | -0.008 | 0.017 | 2.14 |
2.3.5.7 | 4375/4374, [-1 4 11 -11⟩, [46 -14 -3 -6⟩ | [⟨1547 2542 3592 4343]] | -0.007 | 0.014 | 1.86 |
2.3.5.7.11 | 4375/4374, 151263/151250, 820125/819896, 2097152/2096325 | [⟨1547 2542 3592 4343 5352]] | -0.017 | 0.024 | 3.10 |
2.3.5.7.11.13 | 4375/4374, 4096/4095, 10648/10647, 91125/91091, 105644/105625 | [⟨1547 2542 3592 4343 5352 5725]] | -0.029 | 0.034 | 4.42 |
Rank-2 temperaments
Periods per 8ve |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 118\1547 | 91.532 | [9 -32 18⟩ | Gross |
1 | 579\1547 | 449.127 | 35/27 | Semidimi |
7 | 670\1547 (7\1547) |
519.715 (5.429) |
27/20 (325/324) |
Brahmagupta |
13 | 642\1547 (47\1547) |
497.996 (36.458) |
4/3 (?) |
Aluminium |
17 | 321\1547 (48\1547) |
248.998 (37.233) |
[-23 5 9 -2⟩ (100352/98415) |
Chlorine |
91 | 642\1547 (13\1547) |
497.996 (10.084) |
4/3 (176/175) |
Protactinium |