176edo: Difference between revisions
Expand on theory |
m Cleanup and update |
||
(16 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
{{ED intro}} | |||
}} | |||
== Theory == | == Theory == | ||
176edo is [[consistent]] to the [[11-odd-limit]] | 176edo is [[consistent]] to the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and [[50421/50000]] in the 7-limit; [[441/440]], [[3388/3375]], 6912/6875, [[8019/8000]], [[9801/9800]], and [[16384/16335]] in the 11-limit. Using the [[patent val]], [[351/350]], [[364/363]], [[2080/2079]], [[2197/2187]], and [[4096/4095]] in the 13-limit. | ||
It | 176edo tempers the [[64/63|Archytas' comma]] to 1/44th of the octave (4 steps) and as a corollary supports the [[ruthenium]] temperament. It [[support]]s the [[bison]] temperament and the [[bicommatic]] temperament, and provides the [[optimal patent val]] for [[countermiracle]] in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{ | {{Harmonics in equal|176}} | ||
=== Subsets and supersets === | |||
Since 176 factors into primes as {{nowrap| 2<sup>4</sup> × 11 }}, 176edo has subset edos {{EDOs| 2, 4, 8, 11, 16, 22, 44, and 88 }}. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
Line 29: | Line 26: | ||
|- | |- | ||
| 2.3 | | 2.3 | ||
| {{ | | {{Monzo| 279 -176 }} | ||
| | | {{Mapping| 176 279 }} | ||
| | | −0.100 | ||
| 0.100 | | 0.100 | ||
| 1.47 | | 1.47 | ||
Line 37: | Line 34: | ||
| 2.3.5 | | 2.3.5 | ||
| 78732/78125, {{monzo| 41 -20 -4 }} | | 78732/78125, {{monzo| 41 -20 -4 }} | ||
| | | {{Mapping| 176 279 409 }} | ||
| | | −0.400 | ||
| 0.432 | | 0.432 | ||
| 6.34 | | 6.34 | ||
Line 44: | Line 41: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 6144/6125, 10976/10935, 50421/50000 | | 6144/6125, 10976/10935, 50421/50000 | ||
| | | {{Mapping| 176 279 409 494 }} | ||
| | | −0.243 | ||
| 0.463 | | 0.463 | ||
| 6.79 | | 6.79 | ||
Line 51: | Line 48: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 441/440, 3388/3375, 6144/6125, 8019/8000 | | 441/440, 3388/3375, 6144/6125, 8019/8000 | ||
| | | {{Mapping| 176 279 409 494 609 }} | ||
| | | −0.250 | ||
| 0.414 | | 0.414 | ||
| 6.08 | | 6.08 | ||
Line 58: | Line 55: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 351/350, 364/363, 441/440, 2197/2187, 3146/3125 | | 351/350, 364/363, 441/440, 2197/2187, 3146/3125 | ||
| | | {{Mapping| 176 279 409 494 609 651 }} | ||
| | | −0.123 | ||
| 0.473 | | 0.473 | ||
| 6.93 | | 6.93 | ||
Line 66: | Line 63: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br>per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br>ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 101: | Line 99: | ||
| 565.91 | | 565.91 | ||
| 13/9 | | 13/9 | ||
| [[ | | [[Alphatrident]] | ||
|- | |- | ||
| 2 | | 2 | ||
Line 107: | Line 105: | ||
| 20.45 | | 20.45 | ||
| 81/80 | | 81/80 | ||
| [[ | | [[Bicommatic]] | ||
|- | |- | ||
| 2 | | 2 | ||
Line 114: | Line 112: | ||
| 35/32 | | 35/32 | ||
| [[Bison]] | | [[Bison]] | ||
|- | |||
| 4 | |||
| 73\176<br>(15\176) | |||
| 497.73<br>(102.27) | |||
| 4/3<br>(35/33) | |||
| [[Unlit]] | |||
|- | |||
| 8 | |||
| 73\176<br>(7\176) | |||
| 497.73<br>(47.73) | |||
| 4/3<br>(36/35) | |||
| [[Twilight]] | |||
|- | |- | ||
| 8 | | 8 | ||
Line 131: | Line 141: | ||
| 497.73<br>(6.82) | | 497.73<br>(6.82) | ||
| 4/3<br>(385/384) | | 4/3<br>(385/384) | ||
| [[Icosidillic]] | | [[Icosidillic]] / [[major arcana]] | ||
|} | |} | ||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Countermiracle]] | [[Category:Countermiracle]] |
Latest revision as of 14:02, 16 March 2025
← 175edo | 176edo | 177edo → |
176 equal divisions of the octave (abbreviated 176edo or 176ed2), also called 176-tone equal temperament (176tet) or 176 equal temperament (176et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 176 equal parts of about 6.82 ¢ each. Each step represents a frequency ratio of 21/176, or the 176th root of 2.
Theory
176edo is consistent to the 11-odd-limit. The equal temperament tempers out 78732/78125 (sensipent comma) and [41 -20 -4⟩ (undim comma) in the 5-limit; 6144/6125, 10976/10935, and 50421/50000 in the 7-limit; 441/440, 3388/3375, 6912/6875, 8019/8000, 9801/9800, and 16384/16335 in the 11-limit. Using the patent val, 351/350, 364/363, 2080/2079, 2197/2187, and 4096/4095 in the 13-limit.
176edo tempers the Archytas' comma to 1/44th of the octave (4 steps) and as a corollary supports the ruthenium temperament. It supports the bison temperament and the bicommatic temperament, and provides the optimal patent val for countermiracle in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.32 | +2.32 | -0.64 | +0.95 | -1.89 | -2.68 | +2.49 | -1.00 | -0.03 | +0.42 |
Relative (%) | +0.0 | +4.7 | +34.1 | -9.4 | +14.0 | -27.7 | -39.3 | +36.5 | -14.7 | -0.5 | +6.1 | |
Steps (reduced) |
176 (0) |
279 (103) |
409 (57) |
494 (142) |
609 (81) |
651 (123) |
719 (15) |
748 (44) |
796 (92) |
855 (151) |
872 (168) |
Subsets and supersets
Since 176 factors into primes as 24 × 11, 176edo has subset edos 2, 4, 8, 11, 16, 22, 44, and 88.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [279 -176⟩ | [⟨176 279]] | −0.100 | 0.100 | 1.47 |
2.3.5 | 78732/78125, [41 -20 -4⟩ | [⟨176 279 409]] | −0.400 | 0.432 | 6.34 |
2.3.5.7 | 6144/6125, 10976/10935, 50421/50000 | [⟨176 279 409 494]] | −0.243 | 0.463 | 6.79 |
2.3.5.7.11 | 441/440, 3388/3375, 6144/6125, 8019/8000 | [⟨176 279 409 494 609]] | −0.250 | 0.414 | 6.08 |
2.3.5.7.11.13 | 351/350, 364/363, 441/440, 2197/2187, 3146/3125 | [⟨176 279 409 494 609 651]] | −0.123 | 0.473 | 6.93 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 17\176 | 115.91 | 77/72 | Mercy / countermiracle / counterbenediction / countermanna |
1 | 35\176 | 238.64 | 147/128 | Tokko |
1 | 65\176 | 443.18 | 162/125 | Sensipent |
1 | 73\176 | 497.73 | 4/3 | Gary / cotoneum |
1 | 83\176 | 565.91 | 13/9 | Alphatrident |
2 | 23\176 | 20.45 | 81/80 | Bicommatic |
2 | 23\176 | 156.82 | 35/32 | Bison |
4 | 73\176 (15\176) |
497.73 (102.27) |
4/3 (35/33) |
Unlit |
8 | 73\176 (7\176) |
497.73 (47.73) |
4/3 (36/35) |
Twilight |
8 | 83\176 (5\176) |
565.91 (34.09) |
168/121 (55/54) |
Octowerck (176f) / octowerckis (176) |
11 | 73\176 (7\176) |
497.73 (47.73) |
4/3 (36/35) |
Hendecatonic |
22 | 73\176 (1\176) |
497.73 (6.82) |
4/3 (385/384) |
Icosidillic / major arcana |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct