|
|
(15 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| '''[[Ed5|Division of the 5th harmonic]] into 28 equal parts''' (28ED5) is related to [[12edo|12EDO]], but with the 5/1 rather than the 2/1 being just. The octave is about 5.8656 cents compressed and the step size is about 99.5112 cents. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning also has the perfect fourth which is more accurate for 4/3 than that of 12EDO, as well as 18/17, 19/16, and 24/17.
| | {{Infobox ET}} |
| | {{ED intro}} |
|
| |
|
| {| class="wikitable" | | == Theory == |
| | 28ed5 is related to [[12edo]], but with the 5/1 rather than the 2/1 being just. This compresses the octave by 5.8656{{c}}, a small but significant deviation. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning also has the perfect fourth which is more accurate for 4/3 than that of 12edo, as well as 18/17, 19/16, and 24/17. |
| | |
| | === Harmonics === |
| | {{Harmonics in equal|28|5|1}} |
| | {{Harmonics in equal|28|5|1|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 28ed5 (continued)}} |
| | |
| | === Subsets and supersets === |
| | Since 28 factors into 2<sup>2</sup> × 7, 28ed5 has subset ed5's {{EDs|equave=5| 2, 4, 7, and 14 }}. |
| | |
| | == Intervals == |
| | {| class="wikitable center-1 right-2" |
| |- | | |- |
| ! | degree | | ! # |
| ! | cents value | | ! Cents |
| ! | corresponding <br>JI intervals | | ! Approximate ratios |
| ! | comments
| |
| |- | | |- |
| | | 0
| | | 0 |
| | | 0.0000
| | | 0.0 |
| | | '''exact [[1/1]]''' | | | [[1/1]] |
| | |
| |
| |- | | |- |
| | | 1
| | | 1 |
| | | 99.5112
| | | 99.5 |
| | | [[18/17]]
| | | [[18/17]] |
| | |
| |
| |- | | |- |
| | | 2
| | | 2 |
| | | 199.0224
| | | 199.0 |
| | | [[55/49]]
| | | [[9/8]] |
| | |
| |
| |- | | |- |
| | | 3
| | | 3 |
| | | 298.5336
| | | 298.5 |
| | | [[19/16]]
| | | [[6/5]] |
| | |
| |
| |- | | |- |
| | | 4
| | | 4 |
| | | 398.0448
| | | 398.0 |
| | | 34/27
| | | [[5/4]] |
| | | pseudo-[[5/4]] | |
| |- | | |- |
| | | 5
| | | 5 |
| | | 497.5560
| | | 497.6 |
| | | [[4/3]]
| | | [[4/3]] |
| | |
| |
| |- | | |- |
| | | 6
| | | 6 |
| | | 597.0672
| | | 597.1 |
| | | [[24/17]]
| | | [[7/5]] |
| | |
| |
| |- | | |- |
| | | 7
| | | 7 |
| | | 696.5784
| | | 696.6 |
| | |
| | | [[3/2]] |
| | | meantone fifth <br>(pseudo-[[3/2]]) | |
| |- | | |- |
| | | 8
| | | 8 |
| | | 796.0896
| | | 796.1 |
| | | [[19/12]]
| | | [[8/5]] |
| | |
| |
| |- | | |- |
| | | 9
| | | 9 |
| | | 895.6008
| | | 895.6 |
| | | 57/34
| | | [[5/3]] |
| | | pseudo-[[5/3]] | |
| |- | | |- |
| | | 10
| | | 10 |
| | | 995.1120
| | | 995.1 |
| | | [[16/9]]
| | | [[7/4]] |
| | |
| |
| |- | | |- |
| | | 11
| | | 11 |
| | | 1094.6232
| | | 1094.6 |
| | | [[32/17]]
| | | [[15/8]] |
| | |
| |
| |- | | |- |
| | | 12
| | | 12 |
| | | 1194.1344
| | | 1194.1 |
| | | 255/128
| | | [[2/1]] |
| | | pseudo-[[octave]] | |
| |- | | |- |
| | | 13
| | | 13 |
| | | 1293.6457
| | | 1293.6 |
| | | [[19/18|19/9]]
| | | [[17/8]] |
| | |
| |
| |- | | |- |
| | | 14
| | | 14 |
| | | 1393.1569
| | | 1393.2 |
| | | [[19/17|38/17]], 85/38
| | | [[9/4]] |
| | | meantone major second plus an octave
| |
| |- | | |- |
| | | 15
| | | 15 |
| | | 1492.6681
| | | 1492.7 |
| | | 45/19 | | | [[12/5]] |
| | |
| |
| |- | | |- |
| | | 16
| | | 16 |
| | | 1592.1793
| | | 1592.2 |
| | | 128/51
| | | [[5/2]] |
| | | pseudo-[[5/2]] | |
| |- | | |- |
| | | 17
| | | 17 |
| | | 1691.6905
| | | 1691.7 |
| | | 85/32 | | | [[8/3]] |
| | |
| |
| |- | | |- |
| | | 18
| | | 18 |
| | | 1791.2017
| | | 1791.2 |
| | | [[45/32|45/16]]
| | | [[14/5]] |
| | |
| |
| |- | | |- |
| | | 19
| | | 19 |
| | | 1890.7129
| | | 1890.7 |
| | | 170/57
| | | [[3/1]] |
| | | pseudo-[[3/1]] | |
| |- | | |- |
| | | 20
| | | 20 |
| | | 1990.2241
| | | 1990.2 |
| | | [[30/19|60/19]]
| | | [[16/5]] |
| | |
| |
| |- | | |- |
| | | 21
| | | 21 |
| | | 2089.7353
| | | 2089.7 |
| | |
| | | [[10/3]] |
| | | meantone major sixth plus an octave <br>(pseudo-[[10/3]]) | |
| |- | | |- |
| | | 22
| | | 22 |
| | | 2189.2465
| | | 2189.2 |
| | | 85/24 | | | [[7/2]] |
| | |
| |
| |- | | |- |
| | | 23
| | | 23 |
| | | 2288.7577
| | | 2288.8 |
| | | [[15/4]]
| | | [[15/4]] |
| | |
| |
| |- | | |- |
| | | 24
| | | 24 |
| | | 2388.2689
| | | 2388.3 |
| | | 135/34
| | | [[4/1]] |
| | | pseudo-[[4/1]] | |
| |- | | |- |
| | | 25
| | | 25 |
| | | 2487.7801
| | | 2487.8 |
| | | [[20/19|80/19]]
| | | [[17/4]] |
| | |
| |
| |- | | |- |
| | | 26
| | | 26 |
| | | 2587.2913
| | | 2587.3 |
| | | [[49/44|49/11]]
| | | [[9/2]] |
| | |
| |
| |- | | |- |
| | | 27
| | | 27 |
| | | 2686.8025
| | | 2686.8 |
| | | 85/18 | | | [[19/4]] |
| | |
| |
| |- | | |- |
| | | 28
| | | 28 |
| | | 2786.3137
| | | 2786.3 |
| | | '''exact [[5/1]]''' | | | [[5/1]] |
| | | just major third plus two octaves
| |
| |} | | |} |
|
| |
|
| == 28ed5 as a generator == | | == Regular temperaments == |
| 28ED5 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[Subgroup temperaments|subgroup temperament]] which tempers out 1216/1215, 1445/1444, and 6144/6137, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quindromeda'' temperament). This temperament is supported by {{Val list|12, 169, 181, 193, 205, 217, 229}}, and [[241edo|241]] EDOs.
| | {{Main| Quindromeda family }} |
|
| |
|
| Equating 225/224 with 256/255 leads ''[[Hemifamity temperaments #Quintakwai|quintakwai]]'' (12&193), which tempers out 400/399 (also equating 20/19 and 21/20) in the 2.3.5.7.17.19 subgroup, and 361/360 with 400/399 leads ''[[Hemimean clan #Quintagar|quintagar]]'' (12&217), which tempers out 476/475 (also equating 19/17 with 28/25) in the 2.3.5.7.17.19 subgroup.
| | 28ed5 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[subgroup temperament]] which tempers out 1216/1215, 1445/1444, and 6144/6137, which is a [[cluster temperament]] with 12 clusters of notes in an octave (quindromeda temperament). This temperament is supported by {{EDOs| 12-, 169-, 181-, 193-, 205-, 217-, 229-, and 241edo }}. |
|
| |
|
| | Equating 225/224 with 256/255 leads to [[quintakwai]] (12 & 193), which tempers out 400/399 (also equating 20/19 and 21/20) in the 2.3.5.7.17.19 subgroup, and 361/360 with 400/399 leads to [[quintagar]] (12 & 217), which tempers out 476/475 (also equating 19/17 with 28/25) in the 2.3.5.7.17.19 subgroup. |
|
| |
|
| ; <font style="font-size: 1.15em">Quindromeda (12&193)</font>
| | == See also == |
| '''5-limit'''<br>
| | * [[7edf]] – relative edf |
| Comma: {{monzo|56 -28 -5}}<br>
| | * [[12edo]] – relative edo |
| Mapping: [{{val|1 2 0}}, {{val|0 -5 28}}]<br>
| | * [[19edt]] – relative edt |
| POTE generator: ~4428675/4194304 = 99.526<br>
| | * [[31ed6]] – relative ed6 |
| Vals: 12, 169, 181, 193, 205, 217, 422<br>
| | * [[34ed7]] – relative ed7 |
| Badness: 0.399849<br><br>
| | * [[40ed10]] – relative ed10 |
| '''2.3.5.17.19 subgroup'''<br>
| | * [[42ed11]] – relative ed11 |
| Comma list: 1216/1215, 1445/1444, 6144/6137<br>
| | * [[76ed80]] – close to the zeta-optimized tuning for 12edo |
| Gencom: [2 18/17; 1216/1215 1445/1444 6144/6137]<br>
| | * [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] |
| Gencom mapping: [{{val|1 2 0 5 4}}, {{val|0 -5 28 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.524<br>
| |
| Vals: 12, 169, 181, 193, 205, 422<br>
| |
| RMS error: 0.0813 cents<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemifamity temperaments #Quintakwai|Quintakwai]] (12&193)</font>
| |
| '''7-limit'''<br>
| |
| Comma list: 5120/5103, 9765625/9680832<br>
| |
| Mapping: [{{val|1 2 0 -2}}, {{val|0 -5 28 58}}]<br>
| |
| POTE generator: ~625/588 = 99.483<br>
| |
| Vals: 12, 169, 181, 193<br>
| |
| Badness: 0.155536<br><br>
| |
| '''11-limit'''<br>
| |
| Comma list: 1375/1372, 4375/4356, 5120/5103<br>
| |
| Mapping: [{{val|1 2 0 -2 -4}}, {{val|0 -5 28 58 90}}]<br>
| |
| POTE generator: ~35/33 = 99.472<br>
| |
| Vals: 12, 181, 193, 374, 567ce<br>
| |
| Badness: 0.073158<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 325/324, 1375/1372, 1575/1573, 4096/4095<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 10}}, {{val|0 -5 28 58 90 -76}}]<br>
| |
| POTE generator: ~35/33 = 99.468<br>
| |
| Vals: 12, 181, 193, 374, 567ce, 941bce<br>
| |
| Badness: 0.062737<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 325/324, 375/374, 595/594, 1275/1274, 4096/4095<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 10 5}}, {{val|0 -5 28 58 90 -76 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.469<br>
| |
| Vals: 12, 181, 193, 374, 567ce, 941bceg<br>
| |
| Badness: 0.037855<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 325/324, 375/374, 400/399, 595/594, 1216/1215, 1275/1274<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 10 5 4}}, {{val|0 -5 28 58 90 -76 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.469<br>
| |
| Vals: 12, 181, 193, 374, 567ce, 941bcegh, 1508bccdeegghh<br>
| |
| Badness: 0.025861<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemifamity temperaments #Quintakwai|Quinkwai]] (12f&181)</font>
| |
| '''13-limit'''<br>
| |
| Comma list: 352/351, 847/845, 1375/1372, 4375/4356<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 -5}}, {{val|0 -5 28 58 90 105}}]<br>
| |
| POTE generator: ~35/33 = 99.456<br>
| |
| Vals: 12f, 169e, 181<br>
| |
| Badness: 0.061873<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 352/351, 375/374, 595/594, 833/832, 1375/1372<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 -5 5}}, {{val|0 -5 28 58 90 105 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.458<br>
| |
| Vals: 12f, 169e, 181, 374ff, 555cff<br>
| |
| Badness: 0.043506<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 352/351, 375/374, 400/399, 495/494, 595/594, 1375/1372<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 -5 5 4}}, {{val|0 -5 28 58 90 105 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.459<br>
| |
| Vals: 12f, 169e, 181, 374ff, 555cff<br>
| |
| Badness: 0.031313<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemifamity temperaments #Quintakwai|Quintakwoid]] (12f&193)</font>
| |
| '''13-limit'''<br>
| |
| Comma list: 364/363, 625/624, 1375/1372, 5120/5103<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 -6}}, {{val|0 -5 28 58 90 117}}]<br>
| |
| POTE generator: ~35/33 = 99.484<br>
| |
| Vals: 12f, 181f, 193<br>
| |
| Badness: 0.057357<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 364/363, 375/374, 442/441, 595/594, 5120/5103<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 -6 5}}, {{val|0 -5 28 58 90 117 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.484<br>
| |
| Vals: 12f, 181f, 193<br>
| |
| Badness: 0.039289<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 364/363, 375/374, 400/399, 442/441, 595/594, 1216/1215<br>
| |
| Mapping: [{{val|1 2 0 -2 -4 -6 5 4}}, {{val|0 -5 28 58 90 117 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.485<br>
| |
| Vals: 12f, 181f, 193<br>
| |
| Badness: 0.028101<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemimean clan #Quintagar|Quintagar]] (12&217)</font>
| |
| '''7-limit'''<br>
| |
| Comma list: 3136/3125, 33554432/33480783<br>
| |
| Mapping: [{{val|1 2 0 -3}}, {{val|0 -5 28 70}}]<br>
| |
| POTE generator: ~200/189 = 99.555<br>
| |
| Vals: 12, 217, 229, 446, 675c<br>
| |
| Badness: 0.142897<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemimean clan #Quintagar|Quintoneum]] (12&217)</font>
| |
| '''11-limit'''<br>
| |
| Comma list: 441/440, 3136/3125, 7168000/7144929<br>
| |
| Mapping: [{{val|1 2 0 -3 -5}}, {{val|0 -5 28 70 102}}]<br>
| |
| POTE generator: ~35/33 = 99.539<br>
| |
| Vals: 12, 205d, 217<br>
| |
| Badness: 0.087157<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 364/363, 441/440, 3136/3125, 13720/13689<br>
| |
| Mapping: [{{val|1 2 0 -3 -5 -7}}, {{val|0 -5 28 70 102 129}}]<br>
| |
| POTE generator: ~35/33 = 99.541<br>
| |
| Vals: 12f, 205df, 217<br>
| |
| Badness: 0.052361<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 364/363, 441/440, 595/594, 3136/3125, 3757/3750<br>
| |
| Mapping: [{{val|1 2 0 -3 -5 -7 5}}, {{val|0 -5 28 70 102 129 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.540<br>
| |
| Vals: 12f, 205df, 217<br>
| |
| Badness: 0.035653<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 364/363, 441/440, 476/475, 595/594, 1216/1215, 3757/3750<br>
| |
| Mapping: [{{val|1 2 0 -3 -5 -7 5 4}}, {{val|0 -5 28 70 102 129 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.541<br>
| |
| Vals: 12f, 205df, 217<br>
| |
| Badness: 0.025782<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemimean clan #Quintagar|Quintoneoid]] (12&217)</font>
| |
| '''13-limit'''<br>
| |
| Comma list: 441/440, 1001/1000, 3136/3125, 59150/59049<br>
| |
| Mapping: [{{val|1 2 0 -3 -5 11}}, {{val|0 -5 28 70 102 -88}}]<br>
| |
| POTE generator: ~35/33 = 99.537<br>
| |
| Vals: 12, 205d, 217<br>
| |
| Badness: 0.072826<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 441/440, 595/594, 1001/1000, 2601/2600, 3136/3125<br>
| |
| Mapping: [{{val|1 2 0 -3 -5 11 5}}, {{val|0 -5 28 70 102 -88 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.537<br>
| |
| Vals: 12, 205d, 217<br>
| |
| Badness: 0.042339<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 441/440, 476/475, 595/594, 1001/1000, 1216/1215, 2601/2600<br>
| |
| Mapping: [{{val|1 2 0 -3 -5 11 5 4}}, {{val|0 -5 28 70 102 -88 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.537<br>
| |
| Vals: 12, 205d, 217<br>
| |
| Badness: 0.028983<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemimean clan #Quintagar|Quintasandra]] (217&229)</font>
| |
| '''11-limit'''<br>
| |
| Comma list: 3136/3125, 19712/19683, 41503/41472<br>
| |
| Mapping: [{{val|1 2 0 -3 13}}, {{val|0 -5 28 70 -115}}]<br>
| |
| POTE generator: ~200/189 = 99.551<br>
| |
| Vals: 12e, 217, 446<br>
| |
| Badness: 0.109908<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 2080/2079, 3136/3125, 4096/4095, 19712/19683<br>
| |
| Mapping: [{{val|1 2 0 -3 13 11}}, {{val|0 -5 28 70 -115 -88}}]<br>
| |
| POTE generator: ~55/52 = 99.548<br>
| |
| Vals: 12e, 217, 446, 663c<br>
| |
| Badness: 0.067730<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 936/935, 1156/1155, 1377/1375, 3136/3125, 4096/4095<br>
| |
| Mapping: [{{val|1 2 0 -3 13 11 5}}, {{val|0 -5 28 70 -115 -88 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.548<br>
| |
| Vals: 12e, 217, 446, 663c<br>
| |
| Badness: 0.038153<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 476/475, 936/935, 1156/1155, 1216/1215, 1377/1375, 1729/1728<br>
| |
| Mapping: [{{val|1 2 0 -3 13 11 5 4}}, {{val|0 -5 28 70 -115 -88 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.547<br>
| |
| Vals: 12e, 217, 446, 663ch<br>
| |
| Badness: 0.026654<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemimean clan #Quintagar|Quintasandroid]] (12&229)</font>
| |
| '''11-limit'''<br>
| |
| Comma list: 3136/3125, 8019/8000, 15488/15435<br>
| |
| Mapping: [{{val|1 2 0 -3 -6}}, {{val|0 -5 28 70 114}}]<br>
| |
| POTE generator: ~200/189 = 99.570<br>
| |
| Vals: 12, 217e, 229, 470cd, 699cd<br>
| |
| Badness: 0.093971<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 351/350, 2080/2079, 3136/3125, 10648/10647<br>
| |
| Mapping: [{{val|1 2 0 -3 -6 -8}}, {{val|0 -5 28 70 114 141}}]<br>
| |
| POTE generator: ~55/52 = 99.578<br>
| |
| Vals: 12f, 217ef, 229, 241, 470cd, 711ccd<br>
| |
| Badness: 0.065701<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 351/350, 442/441, 561/560, 3136/3125, 7744/7735<br>
| |
| Mapping: [{{val|1 2 0 -3 -6 -8 5}}, {{val|0 -5 28 70 114 141 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.574<br>
| |
| Vals: 12f, 217ef, 229, 241, 470cd<br>
| |
| Badness: 0.046624<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 351/350, 442/441, 476/475, 561/560, 627/625, 6144/6137<br>
| |
| Mapping: [{{val|1 2 0 -3 -6 -8 5 4}}, {{val|0 -5 28 70 114 141 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.575<br>
| |
| Vals: 12f, 217ef, 229, 241, 470cd<br>
| |
| Badness: 0.033145<br><br>
| |
| ; <font style="font-size: 1.15em">[[Hemimean clan #Quintagar|Quintasand]] (12&229)</font>
| |
| '''13-limit'''<br>
| |
| Comma list: 1573/1568, 3136/3125, 4096/4095, 4459/4455<br>
| |
| Mapping: [{{val|1 2 0 -3 -6 11}}, {{val|0 -5 28 70 114 -88}}]<br>
| |
| POTE generator: ~200/189 = 99.556<br>
| |
| Vals: 12, 217e, 229, 446e, 675ceef<br>
| |
| Badness: 0.100195<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 561/560, 715/714, 1701/1700, 3136/3125, 4096/4095<br>
| |
| Mapping: [{{val|1 2 0 -3 -6 11 5}}, {{val|0 -5 28 70 114 -88 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.556<br>
| |
| Vals: 12, 217e, 229, 446e, 675ceef<br>
| |
| Badness: 0.057851<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 286/285, 476/475, 561/560, 627/625, 1216/1215, 1729/1728<br>
| |
| Mapping: [{{val|1 2 0 -3 -6 11 5 4}}, {{val|0 -5 28 70 114 -88 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.557<br>
| |
| Vals: 12, 217e, 229, 446e, 675ceefh<br>
| |
| Badness: 0.040410<br><br>
| |
| ; <font style="font-size: 1.15em">Semiquindromeda (12&422)</font>
| |
| '''7-limit'''<br>
| |
| Comma list: 102760448/102515625, 1220703125/1219784832<br>
| |
| Mapping: [{{val|2 4 0 -5}}, {{val|0 -5 28 64}}]<br>
| |
| POTE generator: ~1323/1250 = 99.521<br>
| |
| Vals: 12, 398, 410, 422, 832, 1254d, 2086bd<br>
| |
| Badness: 0.233140<br><br>
| |
| '''11-limit'''<br>
| |
| Comma list: 5632/5625, 9801/9800, 85937500/85766121<br>
| |
| Mapping: [{{val|2 4 0 -5 -10}}, {{val|0 -5 28 64 102}}]<br>
| |
| POTE generator: ~1323/1250 = 99.525<br>
| |
| Vals: 12, 410, 422<br>
| |
| Badness: 0.093926<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 1716/1715, 2080/2079, 5632/5625, 831875/830466<br>
| |
| Mapping: [{{val|2 4 0 -5 -10 -13}}, {{val|0 -5 28 64 102 123}}]<br>
| |
| POTE generator: ~1323/1250 = 99.523<br>
| |
| Vals: 12f, 410, 422, 1254df, 1676bdff, 2098bcddff<br>
| |
| Badness: 0.053361<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 1716/1715, 2080/2079, 2500/2499, 5632/5625, 15895/15876<br>
| |
| Mapping: [{{val|2 4 0 -5 -10 -13 10}}, {{val|0 -5 28 64 102 123 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.522<br>
| |
| Vals: 12f, 410, 422, 832, 1254df, 1676bdff<br>
| |
| Badness: 0.034659<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 1216/1215, 1445/1444, 1716/1715, 2080/2079, 2376/2375, 2500/2499<br>
| |
| Mapping: [{{val|2 4 0 -5 -10 -13 10 8}}, {{val|0 -5 28 64 102 123 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.523<br>
| |
| Vals: 12f, 410, 422, 1254dfhh, 1676bdffhh<br>
| |
| Badness: 0.025439<br><br>
| |
|
| |
|
| == See also == | | == External links == |
| * [[12edo|12EDO]] - relative EDO | | * [https://sevish.com/scaleworkshop/index.htm?name=28ed5&data=99.5112040666012%0A199.0224081332025%0A298.5336121998037%0A398.0448162664050%0A497.5560203330062%0A597.0672243996075%0A696.5784284662087%0A796.0896325328099%0A895.6008365994112%0A995.1120406660124%0A1094.6232447326137%0A1194.1344487992149%0A1293.6456528658162%0A1393.1568569324174%0A1492.6680609990187%0A1592.1792650656199%0A1691.6904691322211%0A1791.2016731988224%0A1890.7128772654236%0A1990.2240813320249%0A2089.7352853986261%0A2189.2464894652274%0A2288.7576935318286%0A2388.2688975984298%0A2487.7801016650311%0A2587.2913057316323%0A2686.8025097982336%0A2786.3137138648348&freq=220&midi=57&vert=10&horiz=1 Play 28ed5] – Scale Workshop |
| * [[19ed3|19ED3]] - relative ED3 | | * [http://terpstrakeyboard.com/web-app/keys.htm?fundamental=220&right=2&upright=1&size=25&rotation=13.897886248013985&instrument=sawtooth&enum=false&spectrum_colors=false&no_labels=false&scale=!%2028ed5.scl%0A!%20%0A28ed5%0A28%0A!%0A99.5112040666012%0A199.0224081332025%0A298.5336121998037%0A398.0448162664050%0A497.5560203330062%0A597.0672243996075%0A696.5784284662087%0A796.0896325328099%0A895.6008365994112%0A995.1120406660124%0A1094.6232447326137%0A1194.1344487992149%0A1293.6456528658162%0A1393.1568569324174%0A1492.6680609990187%0A1592.1792650656199%0A1691.6904691322211%0A1791.2016731988224%0A1890.7128772654236%0A1990.2240813320249%0A2089.7352853986261%0A2189.2464894652274%0A2288.7576935318286%0A2388.2688975984298%0A2487.7801016650311%0A2587.2913057316323%0A2686.8025097982336%0A2786.3137138648348&names=A%0AA%23%2FBb%0AB%0AC%0AC%23%2FDb%0AD%0AD%23%2FEb%0AE%0AE%23%2FFb%0AF%0AG%0AG%23%2FHb%0AH%0AH%23%2FIb%0AI%0AI%23%2FJb%0AJ%0AK%0AK%23%2FLb%0AL%0AL%23%2FMb%0AM%0AM%23%2FNb%0AN%0AO%0AO%23%2FPb%0AP%0AP%23%2FAb¬e_colors=ffffff%0A7b7b7b%0Affffff%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b Play 28ed5] – Terpstra Keyboard WebApp |
| * [[31ed6|31ED6]] - relative ED6
| |
| * [[34ed7|34ED7]] - relative ED7
| |
| * [[40ed10|40ED10]] - relative ED10
| |
| * [[42ed11|42ED11]] - relative ED11
| |
| * [[18/17s equal temperament|AS18/17]] - relative [[AS|ambitonal sequence]]
| |
|
| |
|
| [[Category:Ed5]] | | [[Category:12edo]] |
| [[Category:Edonoi]]
| |