27ed5
Jump to navigation
Jump to search
Prime factorization
33
Step size
103.197¢
Octave
12\27ed5 (1238.36¢) (→4\9ed5)
Fifth
7\27ed5 (722.378¢)
(semiconvergent)
Semitones (A1:m2)
-6:6 (-619.2¢ : 619.2¢)
Dual sharp fifth
7\27ed5 (722.378¢)
(semiconvergent)
Dual flat fifth
6\27ed5 (619.181¢) (→2\9ed5)
Dual major 2nd
1\27ed5 (103.197¢)
Consistency limit
2
Distinct consistency limit
2
← 26ed5 | 27ed5 | 28ed5 → |
(semiconvergent)
(semiconvergent)
Division of the 5th harmonic into 27 equal parts (27ED5) is a good hyperpyth tuning. The step size is about 103.1968 cents, corresponding to 11.6283 EDO.
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0.0000 | exact 1/1 | |
1 | 103.1968 | 17/16, 35/33 | |
2 | 206.3936 | 9/8, 44/39 | |
3 | 309.5904 | 25/21, 6/5 | |
4 | 412.7872 | 14/11, 19/15 | |
5 | 515.9840 | 35/26 | |
6 | 619.1808 | 10/7 | |
7 | 722.3776 | 38/25 | |
8 | 825.5744 | 8/5 | |
9 | 928.7712 | 12/7 | |
10 | 1031.9680 | 9/5 | |
11 | 1135.1648 | 27/14 | |
12 | 1238.3617 | 45/22 | |
13 | 1341.5585 | 13/6 | |
14 | 1444.7553 | 23/10, 30/13 | |
15 | 1547.9521 | 22/9 | |
16 | 1651.1489 | 13/5 | |
17 | 1754.3457 | 11/4 | |
18 | 1857.5425 | 38/13, 44/15 | |
19 | 1960.7393 | 31/10 | |
20 | 2063.9361 | 33/10, 56/17 | |
21 | 2167.1329 | 7/2 | 17/5 plus 48.5 cents |
22 | 2270.3297 | 26/7 | 19/5 minus 40.9 cents |
23 | 2373.5265 | 63/16 | |
24 | 2476.7233 | 21/5, 88/21 | |
25 | 2579.9201 | 22/5, 40/9 | |
26 | 2683.1169 | 33/7, 52/11, 80/17 | |
27 | 2786.3137 | exact 5/1 | just major third plus two octaves |