# 27ed5

 ← 26ed5 27ed5 28ed5 →
Prime factorization 33
Step size 103.197¢
Octave 12\27ed5 (1238.36¢) (→4\9ed5)
Twelfth 18\27ed5 (1857.54¢) (→2\3ed5)
Consistency limit 2
Distinct consistency limit 2

Division of the 5th harmonic into 27 equal parts (27ED5) is a good hyperpyth tuning. The step size is about 103.1968 cents, corresponding to 11.6283 EDO.

## Harmonics

Approximation of harmonics in 27ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +38.4 -44.4 -26.5 +0.0 -6.1 +36.7 +11.9 +14.4 +38.4 -23.4 +32.3
Relative (%) +37.2 -43.0 -25.7 +0.0 -5.9 +35.5 +11.5 +13.9 +37.2 -22.7 +31.3
Steps
(reduced)
12
(12)
18
(18)
23
(23)
27
(0)
30
(3)
33
(6)
35
(8)
37
(10)
39
(12)
40
(13)
42
(15)

## Intervals

degree cents value corresponding
JI intervals
0 0.0000 exact 1/1
1 103.1968 17/16, 35/33
2 206.3936 9/8, 44/39
3 309.5904 25/21, 6/5
4 412.7872 14/11, 19/15
5 515.9840 35/26
6 619.1808 10/7
7 722.3776 38/25
8 825.5744 8/5
9 928.7712 12/7
10 1031.9680 9/5
11 1135.1648 27/14
12 1238.3617 45/22
13 1341.5585 13/6
14 1444.7553 23/10, 30/13
15 1547.9521 22/9
16 1651.1489 13/5
17 1754.3457 11/4
18 1857.5425 38/13, 44/15
19 1960.7393 31/10
20 2063.9361 33/10, 56/17
21 2167.1329 7/2 17/5 plus 48.5 cents
22 2270.3297 26/7 19/5 minus 40.9 cents
23 2373.5265 63/16
24 2476.7233 21/5, 88/21
25 2579.9201 22/5, 40/9
26 2683.1169 33/7, 52/11, 80/17
27 2786.3137 exact 5/1 just major third plus two octaves