27ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 26ed5 27ed5 28ed5 →
Prime factorization 33
Step size 103.197¢ 
Octave 12\27ed5 (1238.36¢) (→4\9ed5)
Twelfth 18\27ed5 (1857.54¢) (→2\3ed5)
Consistency limit 2
Distinct consistency limit 2

Division of the 5th harmonic into 27 equal parts (27ED5) is a good hyperpyth tuning. The step size is about 103.1968 cents, corresponding to 11.6283 EDO.

Harmonics

Approximation of harmonics in 27ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +38.4 -44.4 -26.5 +0.0 -6.1 +36.7 +11.9 +14.4 +38.4 -23.4 +32.3
Relative (%) +37.2 -43.0 -25.7 +0.0 -5.9 +35.5 +11.5 +13.9 +37.2 -22.7 +31.3
Steps
(reduced)
12
(12)
18
(18)
23
(23)
27
(0)
30
(3)
33
(6)
35
(8)
37
(10)
39
(12)
40
(13)
42
(15)
Approximation of harmonics in 27ed5
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -3.1 -28.2 -44.4 +50.2 +48.5 -50.5 -40.9 -26.5 -7.7 +14.9 +41.2
Relative (%) -3.0 -27.3 -43.0 +48.7 +47.0 -48.9 -39.6 -25.7 -7.5 +14.5 +39.9
Steps
(reduced)
43
(16)
44
(17)
45
(18)
47
(20)
48
(21)
48
(21)
49
(22)
50
(23)
51
(24)
52
(25)
53
(26)

Intervals

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 103.1968 17/16, 35/33
2 206.3936 9/8, 44/39
3 309.5904 25/21, 6/5
4 412.7872 14/11, 19/15
5 515.9840 35/26
6 619.1808 10/7
7 722.3776 38/25
8 825.5744 8/5
9 928.7712 12/7
10 1031.9680 9/5
11 1135.1648 27/14
12 1238.3617 45/22
13 1341.5585 13/6
14 1444.7553 23/10, 30/13
15 1547.9521 22/9
16 1651.1489 13/5
17 1754.3457 11/4
18 1857.5425 38/13, 44/15
19 1960.7393 31/10
20 2063.9361 33/10, 56/17
21 2167.1329 7/2 17/5 plus 48.5 cents
22 2270.3297 26/7 19/5 minus 40.9 cents
23 2373.5265 63/16
24 2476.7233 21/5, 88/21
25 2579.9201 22/5, 40/9
26 2683.1169 33/7, 52/11, 80/17
27 2786.3137 exact 5/1 just major third plus two octaves