26ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 25ed526ed527ed5 →
Prime factorization 2 × 13
Step size 107.166¢ 
Octave 11\26ed5 (1178.83¢)
Twelfth 18\26ed5 (1928.99¢) (→9\13ed5)
Consistency limit 3
Distinct consistency limit 3

26 equal divisions of the 5th harmonic (abbreviated 26ed5) is a nonoctave tuning system that divides the interval of 5/1 into 26 equal parts of about 107 ¢ each. Each step represents a frequency ratio of 51/26, or the 26th root of 5.

26ed5 is a strong tuning for the extremely obscure subgroup 5.6.41.67.97.103.151.181.193.

Less esoterically, it can be used as a mediocre but workable tuning for the more practical subgroup 5.6.11.17.41. Most of these harmonics are tuned sharp, so 26ed5 can be made to work better by compressing 26ed5’s equave, making 5/1 slightly flat but the other harmonics more in-tune. This can elevate 26ed5 from mediocre to pretty decent.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 107.166 18/17
2 214.332 17/15, 25/22
3 321.498 6/5, 23/19
4 428.664 23/18
5 535.83 15/11
6 642.995
7 750.161 17/11, 20/13, 23/15
8 857.327 18/11
9 964.493 7/4
10 1071.659 13/7, 24/13
11 1178.825
12 1285.991 19/9, 21/10, 23/11
13 1393.157
14 1500.323
15 1607.489
16 1714.655
17 1821.821 20/7
18 1928.986
19 2036.152 13/4
20 2143.318 24/7
21 2250.484 11/3
22 2357.65
23 2464.816 25/6
24 2571.982 22/5
25 2679.148
26 2786.314 5/1

Harmonics

Approximation of harmonics in 26ed5
Harmonic 2 3 4 5 6 7 8 9
Error Absolute (¢) -21.2 +27.0 -42.3 +0.0 +5.9 -46.7 +43.6 -53.1
Relative (%) -19.8 +25.2 -39.5 +0.0 +5.5 -43.6 +40.7 -49.6
Steps
(reduced)
11
(11)
18
(18)
22
(22)
26
(0)
29
(3)
31
(5)
34
(8)
35
(9)
Approximation of prime harmonics in 26ed5
Harmonic 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) +28.2 -46.7 +24.7 +46.5 +37.2 -42.6 -50.9 -35.7 +0.9 +25.6 -21.2
Relative (%) +26.3 -43.6 +23.0 +43.3 +34.7 -39.8 -47.5 -33.3 +0.8 +23.9 -19.8
Steps
(reduced)
39
(13)
41
(15)
46
(20)
48
(22)
51
(25)
54
(2)
55
(3)
58
(6)
60
(8)
61
(9)
62
(10)
Approximation of prime harmonics in 26ed5
Harmonic 59 61 67 71 73 79 83 89 97 101 103
Error Absolute (¢) +13.8 -43.9 +8.0 +14.8 -33.3 +44.2 -41.3 +52.2 +10.4 +47.6 +13.6
Relative (%) +12.9 -41.0 +7.4 +13.8 -31.1 +41.3 -38.5 +48.7 +9.7 +44.4 +12.7
Steps
(reduced)
66
(14)
66
(14)
68
(16)
69
(17)
69
(17)
71
(19)
71
(19)
73
(21)
74
(22)
75
(23)
75
(23)
Approximation of prime harmonics in 26ed5
Harmonic 107 109 113 127 131 137 139 149 151 157 163
Error Absolute (¢) -52.3 +22.8 -39.6 -27.5 +26.0 -51.5 +30.5 +17.4 -5.6 +34.1 -30.9
Relative (%) -48.8 +21.3 -37.0 -25.6 +24.3 -48.1 +28.5 +16.3 -5.3 +31.8 -28.8
Steps
(reduced)
75
(23)
76
(24)
76
(24)
78
(0)
79
(1)
79
(1)
80
(2)
81
(3)
81
(3)
82
(4)
82
(4)
Approximation of prime harmonics in 26ed5
Harmonic 167 173 179 181 191 193 197 199 211 223 227
Error Absolute (¢) +34.3 -26.8 +21.4 +2.1 +16.2 -1.8 -37.4 +52.3 -49.1 -37.6 +38.7
Relative (%) +32.0 -25.0 +19.9 +2.0 +15.1 -1.7 -34.9 +48.8 -45.8 -35.1 +36.2
Steps
(reduced)
83
(5)
83
(5)
84
(6)
84
(6)
85
(7)
85
(7)
85
(7)
86
(8)
86
(8)
87
(9)
88
(10)