45zpi: Difference between revisions
Contribution (talk | contribs) |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''45 zeta peak index''' (abbreviated '''45zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 45th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | '''45 zeta peak index''' (abbreviated '''45zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 45th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | ||
{ | {{ZPI | ||
| zpi = 45 | |||
| steps = 14.5944346577250 | |||
| step size = 82.2231232756126 | |||
| height = 2.097730 | |||
| integral = 0.344839 | |||
| gap = 10.594800 | |||
| edo = 15edo | |||
| octave = 1233.34684913419 | |||
| consistent = 2 | |||
| distinct = 2 | |||
}} | |||
|82.2231232756126 | |||
|2.097730 | |||
|0.344839 | |||
|10.594800 | |||
| | |||
|1233.34684913419 | |||
|2 | |||
|2 | |||
== Theory == | == Theory == | ||
Line 46: | Line 30: | ||
== Intervals == | == Intervals == | ||
{| class="wikitable center-1 right-2 left-3 center-4 center-5" | {| class="wikitable center-1 right-2 left-3 center-4 center-5" | ||
|+ style="white-space:nowrap" | Intervals in 45zpi | |||
|- | |- | ||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 25-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: | |||
| colspan="3" style="text-align:left;" | JI ratios are comprised of | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | * '''<u>Bold Underlined:</u>''' relative error < 8.333 % | ||
* '''Bold:''' relative error < 16.667 % | * '''Bold:''' relative error < 16.667 % | ||
Line 61: | Line 46: | ||
! Cents | ! Cents | ||
! Ratios | ! Ratios | ||
! Ups and | ! Ups and downs notation | ||
! Step | ! Step | ||
|- | |- | ||
Line 72: | Line 57: | ||
| 1 | | 1 | ||
| 82.223 | | 82.223 | ||
| | | '''[[25/24]]''', '''[[24/23]]''', '''<u>[[23/22]]'''</u>, '''<u>[[22/21]]'''</u>, '''<u>[[21/20]]'''</u>, '''<u>[[20/19]]'''</u>, '''[[19/18]]''', [[18/17]], <small>[[17/16]]</small>, <small><small>[[16/15]]</small></small>, <small><small><small>[[15/14]]</small></small></small> | ||
| ^m2 | | ^m2 | ||
| 5 | | 5 | ||
Line 78: | Line 63: | ||
| 2 | | 2 | ||
| 164.446 | | 164.446 | ||
| | | <small><small><small>[[14/13]]</small></small></small>, <small>[[13/12]]</small>, [[25/23]], [[12/11]], '''[[23/21]]''', '''<u>[[11/10]]'''</u>, '''[[21/19]]''', [[10/9]], <small><small>[[19/17]]</small></small>, <small><small><small>[[9/8]]</small></small></small> | ||
| vvvM2 | | vvvM2 | ||
| 10 | | 10 | ||
Line 84: | Line 69: | ||
| 3 | | 3 | ||
| 246.669 | | 246.669 | ||
| | | <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, [[8/7]], '''<u>[[23/20]]'''</u>, '''<u>[[15/13]]'''</u>, '''[[22/19]]''', [[7/6]], <small><small><small>[[20/17]]</small></small></small> | ||
| ^^M2, vvm3 | | ^^M2, vvm3 | ||
| 15 | | 15 | ||
Line 90: | Line 75: | ||
| 4 | | 4 | ||
| 328.892 | | 328.892 | ||
| <small><small><small>[[13/11 | | <small><small><small>[[13/11]]</small></small></small>, <small><small>[[19/16]]</small></small>, <small>[[25/21]]</small>, '''[[6/5]]''', '''<u>[[23/19]]'''</u>, '''[[17/14]]''', [[11/9]], <small><small>[[16/13]]</small></small>, <small><small><small>[[21/17]]</small></small></small> | ||
| ^^^m3 | | ^^^m3 | ||
| 20 | | 20 | ||
Line 96: | Line 81: | ||
| 5 | | 5 | ||
| 411.116 | | 411.116 | ||
| | | <small>[[5/4]]</small>, '''<u>[[24/19]]'''</u>, '''<u>[[19/15]]'''</u>, '''<u>[[14/11]]'''</u>, '''[[23/18]]''', <small>[[9/7]]</small>, <small><small><small>[[22/17]]</small></small></small> | ||
| vM3 | | vM3 | ||
| 25 | | 25 | ||
Line 102: | Line 87: | ||
| 6 | | 6 | ||
| 493.339 | | 493.339 | ||
| <small><small><small>[[13/10]]</small> | | <small><small><small>[[13/10]]</small></small></small>, <small><small>[[17/13]]</small></small>, <small>[[21/16]]</small>, [[25/19]], '''<u>[[4/3]]'''</u>, <small><small>[[23/17]]</small></small>, <small><small><small>[[19/14]]</small></small></small> | ||
| P4 | | P4 | ||
| 30 | | 30 | ||
Line 108: | Line 93: | ||
| 7 | | 7 | ||
| 575.562 | | 575.562 | ||
| <small><small><small>[[15/11]]</small> | | <small><small><small>[[15/11]]</small></small></small>, <small>[[11/8]]</small>, '''[[18/13]]''', '''<u>[[25/18]]'''</u>, '''[[7/5]]''', <small>[[24/17]]</small>, <small><small>[[17/12]]</small></small> | ||
| v<sup>4</sup>A4 | | v<sup>4</sup>A4 | ||
| 35 | | 35 | ||
Line 114: | Line 99: | ||
| 8 | | 8 | ||
| 657.785 | | 657.785 | ||
| <small><small><small>[[10/7]]</small></small></small>, <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small> | | <small><small><small>[[10/7]]</small></small></small>, <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[16/11]]''', '''<u>[[19/13]]'''</u>, '''<u>[[22/15]]'''</u>, '''[[25/17]]''' | ||
| vvv5 | | vvv5 | ||
| 40 | | 40 | ||
Line 120: | Line 105: | ||
| 9 | | 9 | ||
| 740.008 | | 740.008 | ||
| <small><small><small>[[3/2]]</small></small></small | | <small><small><small>[[3/2]]</small></small></small>, '''<u>[[23/15]]'''</u>, '''<u>[[20/13]]'''</u>, '''[[17/11]]''', <small>[[14/9]]</small>, <small><small>[[25/16]]</small></small> | ||
| ^^5, vvm6 | | ^^5, vvm6 | ||
| 45 | | 45 | ||
Line 126: | Line 111: | ||
| 10 | | 10 | ||
| 822.231 | | 822.231 | ||
| <small><small><small>[[11/7]]</small> | | <small><small><small>[[11/7]]</small></small></small>, <small>[[19/12]]</small>, '''[[8/5]]''', '''[[21/13]]''', [[13/8]], <small><small>[[18/11]]</small></small>, <small><small><small>[[23/14]]</small></small></small> | ||
| ^^^m6 | | ^^^m6 | ||
| 50 | | 50 | ||
Line 132: | Line 117: | ||
| 11 | | 11 | ||
| 904.454 | | 904.454 | ||
| | | [[5/3]], '''<u>[[22/13]]'''</u>, [[17/10]], <small><small>[[12/7]]</small></small> | ||
| vM6 | | vM6 | ||
| 55 | | 55 | ||
Line 138: | Line 123: | ||
| 12 | | 12 | ||
| 986.677 | | 986.677 | ||
| <small><small><small>[[19/11 | | <small><small><small>[[19/11]]</small></small></small>, [[7/4]], '''<u>[[23/13]]'''</u>, '''[[16/9]]''', [[25/14]], <small><small>[[9/5]]</small></small> | ||
| m7 | | m7 | ||
| 60 | | 60 | ||
Line 144: | Line 129: | ||
| 13 | | 13 | ||
| 1068.901 | | 1068.901 | ||
| | | <small><small>[[20/11]]</small></small>, [[11/6]], '''[[24/13]]''', '''<u>[[13/7]]'''</u>, [[15/8]], <small><small>[[17/9]]</small></small> | ||
| v<sup>4</sup>M7 | | v<sup>4</sup>M7 | ||
| 65 | | 65 | ||
Line 150: | Line 135: | ||
| 14 | | 14 | ||
| 1151.124 | | 1151.124 | ||
| <small><small><small>[[19/10]]</small></small></small>, <small><small>[[21/11]]</small></small>, <small>[[23/12]]</small>, [[25/13]] | | <small><small><small>[[19/10]]</small></small></small>, <small><small>[[21/11]]</small></small>, <small>[[23/12]]</small>, [[25/13]] | ||
| ^M7 | | ^M7 | ||
| 70 | | 70 | ||
Line 156: | Line 141: | ||
| 15 | | 15 | ||
| 1233.347 | | 1233.347 | ||
| <small><small>[[2/1 | | <small><small>[[2/1]]</small></small>, <small><small><small>[[25/12]]</small></small></small> | ||
| ^^1 +1 oct, vvm2 +1 oct | | ^^1 +1 oct, vvm2 +1 oct | ||
| 75 | | 75 | ||
Line 162: | Line 147: | ||
| 16 | | 16 | ||
| 1315.570 | | 1315.570 | ||
| <small><small><small>[[23/11]]</small></small></small>, <small><small>[[21/10]]</small></small>, <small>[[19/9]]</small>, '''[[17/8]]''' | | <small><small><small>[[23/11]]</small></small></small>, <small><small>[[21/10]]</small></small>, <small>[[19/9]]</small>, '''[[17/8]]''', '''<u>[[15/7]]'''</u>, <small>[[13/6]]</small>, <small><small><small>[[24/11]]</small></small></small> | ||
| ^^^m2 +1 oct | | ^^^m2 +1 oct | ||
| 80 | | 80 | ||
Line 168: | Line 153: | ||
| 17 | | 17 | ||
| 1397.793 | | 1397.793 | ||
| <small><small>[[11/5]]</small> | | <small><small>[[11/5]]</small></small>, [[20/9]], '''<u>[[9/4]]'''</u>, <small>[[25/11]]</small>, <small><small>[[16/7]]</small></small> | ||
| vM2 +1 oct | | vM2 +1 oct | ||
| 85 | | 85 | ||
Line 174: | Line 159: | ||
| 18 | | 18 | ||
| 1480.016 | | 1480.016 | ||
| <small><small><small>[[23/10]]</small> | | <small><small><small>[[23/10]]</small></small></small>, '''[[7/3]]''', [[19/8]], <small><small><small>[[12/5]]</small></small></small> | ||
| m3 +1 oct | | m3 +1 oct | ||
| 90 | | 90 | ||
Line 180: | Line 165: | ||
| 19 | | 19 | ||
| 1562.239 | | 1562.239 | ||
| | | <small>[[17/7]]</small>, [[22/9]], <small>[[5/2]]</small> | ||
| v<sup>4</sup>M3 +1 oct | | v<sup>4</sup>M3 +1 oct | ||
| 95 | | 95 | ||
Line 186: | Line 171: | ||
| 20 | | 20 | ||
| 1644.462 | | 1644.462 | ||
| | | [[23/9]], '''[[18/7]]''', '''[[13/5]]''', <small>[[21/8]]</small> | ||
| ^M3 +1 oct | | ^M3 +1 oct | ||
| 100 | | 100 | ||
Line 192: | Line 177: | ||
| 21 | | 21 | ||
| 1726.686 | | 1726.686 | ||
| <small><small>[[8/3]]</small></small> | | <small><small>[[8/3]]</small></small>, '''<u>[[19/7]]'''</u>, <small>[[11/4]]</small> | ||
| ^^4 +1 oct | | ^^4 +1 oct | ||
| 105 | | 105 | ||
Line 198: | Line 183: | ||
| 22 | | 22 | ||
| 1808.909 | | 1808.909 | ||
| <small><small><small>[[25/9]]</small></small></small>, <small>[[14/5]]</small> | | <small><small><small>[[25/9]]</small></small></small>, <small>[[14/5]]</small>, '''<u>[[17/6]]'''</u>, '''[[20/7]]''', [[23/8]] | ||
| ^^^d5 +1 oct | | ^^^d5 +1 oct | ||
| 110 | | 110 | ||
Line 210: | Line 195: | ||
| 24 | | 24 | ||
| 1973.355 | | 1973.355 | ||
| | | '''<u>[[25/8]]'''</u>, '''[[22/7]]''', <small>[[19/6]]</small>, <small><small><small>[[16/5]]</small></small></small> | ||
| m6 +1 oct | | m6 +1 oct | ||
| 120 | | 120 | ||
Line 216: | Line 201: | ||
| 25 | | 25 | ||
| 2055.578 | | 2055.578 | ||
| | | [[13/4]], '''<u>[[23/7]]'''</u>, <small><small>[[10/3]]</small></small> | ||
| v<sup>4</sup>M6 +1 oct | | v<sup>4</sup>M6 +1 oct | ||
| 125 | | 125 | ||
Line 222: | Line 207: | ||
| 26 | | 26 | ||
| 2137.801 | | 2137.801 | ||
| | | [[17/5]], '''<u>[[24/7]]'''</u>, <small><small>[[7/2]]</small></small> | ||
| ^M6 +1 oct | | ^M6 +1 oct | ||
| 130 | | 130 | ||
Line 228: | Line 213: | ||
| 27 | | 27 | ||
| 2220.024 | | 2220.024 | ||
| | | [[25/7]], '''<u>[[18/5]]'''</u>, <small><small>[[11/3]]</small></small> | ||
| ^^m7 +1 oct | | ^^m7 +1 oct | ||
| 135 | | 135 | ||
Line 234: | Line 219: | ||
| 28 | | 28 | ||
| 2302.247 | | 2302.247 | ||
| | | [[15/4]], '''[[19/5]]''', <small>[[23/6]]</small> | ||
| vvM7 +1 oct | | vvM7 +1 oct | ||
| 140 | | 140 | ||
Line 240: | Line 225: | ||
| 29 | | 29 | ||
| 2384.471 | | 2384.471 | ||
| | | [[4/1]] | ||
| v1 +2 oct | | v1 +2 oct | ||
| 145 | | 145 | ||
Line 246: | Line 231: | ||
| 30 | | 30 | ||
| 2466.694 | | 2466.694 | ||
| | | '''<u>[[25/6]]'''</u>, [[21/5]], <small><small><small>[[17/4]]</small></small></small> | ||
| m2 +2 oct | | m2 +2 oct | ||
| 150 | | 150 | ||
Line 252: | Line 237: | ||
| 31 | | 31 | ||
| 2548.917 | | 2548.917 | ||
| | | '''[[13/3]]''', [[22/5]] | ||
| v<sup>4</sup>M2 +2 oct | | v<sup>4</sup>M2 +2 oct | ||
| 155 | | 155 | ||
Line 258: | Line 243: | ||
| 32 | | 32 | ||
| 2631.140 | | 2631.140 | ||
| <small>[[9/2]]</small | | <small>[[9/2]]</small>, '''[[23/5]]''', <small><small><small>[[14/3]]</small></small></small> | ||
| ^M2 +2 oct | | ^M2 +2 oct | ||
| 160 | | 160 | ||
Line 264: | Line 249: | ||
| 33 | | 33 | ||
| 2713.363 | | 2713.363 | ||
| [[19/4]], '''<u>[[24/5]]'''</u> | | [[19/4]], '''<u>[[24/5]]'''</u> | ||
| ^^m3 +2 oct | | ^^m3 +2 oct | ||
| 165 | | 165 | ||
Line 276: | Line 261: | ||
| 35 | | 35 | ||
| 2877.809 | | 2877.809 | ||
| | | '''[[21/4]]''', [[16/3]] | ||
| v4 +2 oct | | v4 +2 oct | ||
| 175 | | 175 | ||
Line 282: | Line 267: | ||
| 36 | | 36 | ||
| 2960.032 | | 2960.032 | ||
| | | '''[[11/2]]''' | ||
| ^<sup>4</sup>4 +2 oct | | ^<sup>4</sup>4 +2 oct | ||
| 180 | | 180 | ||
Line 288: | Line 273: | ||
| 37 | | 37 | ||
| 3042.256 | | 3042.256 | ||
| <small><small><small>[[17/3]]</small></small></small>, [[23/4]] | | <small><small><small>[[17/3]]</small></small></small>, [[23/4]] | ||
| v<sup>4</sup>5 +2 oct | | v<sup>4</sup>5 +2 oct | ||
| 185 | | 185 | ||
Line 294: | Line 279: | ||
| 38 | | 38 | ||
| 3124.479 | | 3124.479 | ||
| <small>[[6/1]] | | <small>[[6/1]]</small> | ||
| ^5 +2 oct | | ^5 +2 oct | ||
| 190 | | 190 | ||
Line 300: | Line 285: | ||
| 39 | | 39 | ||
| 3206.702 | | 3206.702 | ||
| <small><small>[[25/4]]</small></small>, '''[[19/3 | | <small><small>[[25/4]]</small></small>, '''[[19/3]]''', <small><small>[[13/2]]</small></small> | ||
| ^^m6 +2 oct | | ^^m6 +2 oct | ||
| 195 | | 195 | ||
Line 306: | Line 291: | ||
| 40 | | 40 | ||
| 3288.925 | | 3288.925 | ||
| '''<u>[[20/3]]'''</u> | | '''<u>[[20/3]]'''</u> | ||
| vvM6 +2 oct | | vvM6 +2 oct | ||
| 200 | | 200 | ||
Line 318: | Line 303: | ||
| 42 | | 42 | ||
| 3453.371 | | 3453.371 | ||
| | | '''<u>[[22/3]]'''</u>, <small><small><small>[[15/2]]</small></small></small> | ||
| ^<sup>4</sup>m7 +2 oct | | ^<sup>4</sup>m7 +2 oct | ||
| 210 | | 210 | ||
Line 324: | Line 309: | ||
| 43 | | 43 | ||
| 3535.594 | | 3535.594 | ||
| '''[[23/3 | | '''[[23/3]]''' | ||
| M7 +2 oct | | M7 +2 oct | ||
| 215 | | 215 | ||
Line 336: | Line 321: | ||
| 45 | | 45 | ||
| 3700.041 | | 3700.041 | ||
| <small><small>[[25/3]]</small></small>, '''<u>[[17/2]]'''</u | | <small><small>[[25/3]]</small></small>, '''<u>[[17/2]]'''</u> | ||
| ^^m2 +3 oct | | ^^m2 +3 oct | ||
| 225 | | 225 | ||
Line 348: | Line 333: | ||
| 47 | | 47 | ||
| 3864.487 | | 3864.487 | ||
| | | <small><small>[[19/2]]</small></small> | ||
| vm3 +3 oct | | vm3 +3 oct | ||
| 235 | | 235 | ||
Line 354: | Line 339: | ||
| 48 | | 48 | ||
| 3946.710 | | 3946.710 | ||
| | | <small><small><small>[[10/1]]</small></small></small> | ||
| ^<sup>4</sup>m3 +3 oct | | ^<sup>4</sup>m3 +3 oct | ||
| 240 | | 240 | ||
Line 360: | Line 345: | ||
| 49 | | 49 | ||
| 4028.933 | | 4028.933 | ||
| | | | ||
| M3 +3 oct | | M3 +3 oct | ||
| 245 | | 245 | ||
Line 366: | Line 351: | ||
| 50 | | 50 | ||
| 4111.156 | | 4111.156 | ||
| <small><small><small>[[21/2]]</small></small></small> | | <small><small><small>[[21/2]]</small></small></small>, <small><small><small>[[11/1]]</small></small></small> | ||
| ^4 +3 oct | | ^4 +3 oct | ||
| 250 | | 250 | ||
Line 396: | Line 381: | ||
| 55 | | 55 | ||
| 4522.272 | | 4522.272 | ||
| | | | ||
| M6 +3 oct | | M6 +3 oct | ||
| 275 | | 275 | ||
Line 402: | Line 387: | ||
| 56 | | 56 | ||
| 4604.495 | | 4604.495 | ||
| <small><small><small>[[14/1]]</small></small> | | <small><small><small>[[14/1]]</small></small></small> | ||
| ^m7 +3 oct | | ^m7 +3 oct | ||
| 280 | | 280 | ||
Line 414: | Line 399: | ||
| 58 | | 58 | ||
| 4768.941 | | 4768.941 | ||
| | | <small><small>[[16/1]]</small></small> | ||
| ^^M7 +3 oct, vv1 +4 oct | | ^^M7 +3 oct, vv1 +4 oct | ||
| 290 | | 290 | ||
Line 477: | Line 462: | ||
| ^m6 +4 oct | | ^m6 +4 oct | ||
| 340 | | 340 | ||
|} | |||
== Approximation to JI == | |||
=== Interval mappings === | |||
The following tables show how 25-integer-limit intervals are represented in 45zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 25-integer-limit intervals in 45zpi (by direct approximation) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[23/15]] | |||
| +0.002 | |||
| +0.003 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''+0.321''' | |||
| '''+0.390''' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-0.479''' | |||
| '''-0.583''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/10]]'' | |||
| ''-0.558'' | |||
| ''-0.679'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''+0.728'' | |||
| ''+0.885'' | |||
|- | |||
| [[19/13]] | |||
| +0.800 | |||
| +0.973 | |||
|- | |||
| [[23/13]] | |||
| -1.069 | |||
| -1.300 | |||
|- | |||
| [[15/13]] | |||
| -1.072 | |||
| -1.303 | |||
|- | |||
| '''[[23/1]]''' | |||
| '''-1.548''' | |||
| '''-1.883''' | |||
|- | |||
| [[15/1]] | |||
| -1.551 | |||
| -1.886 | |||
|- | |||
| [[22/21]] | |||
| +1.686 | |||
| +2.051 | |||
|- | |||
| [[23/19]] | |||
| -1.869 | |||
| -2.273 | |||
|- | |||
| [[19/15]] | |||
| +1.871 | |||
| +2.276 | |||
|- | |||
| [[19/7]] | |||
| -2.002 | |||
| -2.434 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''-2.244'' | |||
| ''-2.729'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''-2.278'' | |||
| ''-2.771'' | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+2.322''' | |||
| '''+2.824''' | |||
|- | |||
| [[18/5]] | |||
| +2.428 | |||
| +2.953 | |||
|- | |||
| [[13/7]] | |||
| -2.801 | |||
| -3.407 | |||
|- | |||
| [[23/7]] | |||
| -3.870 | |||
| -4.707 | |||
|- | |- | ||
| | | [[15/7]] | ||
| -3.873 | |||
| -4.710 | |||
| | |||
| | |||
|- | |- | ||
| | | [[25/6]] | ||
| | | -3.979 | ||
| '''[[ | | -4.839 | ||
| | |- | ||
| | | [[22/3]] | ||
| +4.008 | |||
| +4.875 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/3]]'' | |||
| ''+4.566'' | |||
| ''+5.553'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/7]]'' | |||
| ''+4.672'' | |||
| ''+5.682'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/3]]'' | |||
| ''-4.706'' | |||
| ''-5.724'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''+4.709'' | |||
| ''+5.727'' | |||
|- | |||
| [[17/2]] | |||
| -4.915 | |||
| -5.977 | |||
|- | |||
| [[22/15]] | |||
| -5.264 | |||
| -6.402 | |||
|- | |||
| [[23/22]] | |||
| +5.267 | |||
| +6.405 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''-5.778'' | |||
| ''-7.027'' | |||
|- | |||
| [[17/6]] | |||
| +5.908 | |||
| +7.186 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/4]]'' | |||
| ''-6.117'' | |||
| ''-7.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''-6.257'' | |||
| ''-7.610'' | |||
|- | |||
| [[22/13]] | |||
| -6.336 | |||
| -7.706 | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/11]]'' | |||
| ''-6.392'' | |||
| ''-7.774'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/19]]'' | |||
| ''-6.578'' | |||
| ''-8.000'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''+6.674'' | |||
| ''+8.116'' | |||
|- | |||
| [[22/1]] | |||
| -6.815 | |||
| -8.288 | |||
|- | |||
| [[25/18]] | |||
| +6.844 | |||
| +8.324 | |||
|- | |||
| [[7/5]] | |||
| -6.950 | |||
| -8.453 | |||
|- | |||
| [[23/21]] | |||
| +6.953 | |||
| +8.456 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''+6.994'' | |||
| ''+8.506'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''+7.028'' | |||
| ''+8.548'' | |||
|- | |||
| [[22/19]] | |||
| -7.136 | |||
| -8.678 | |||
|- | |||
| [[17/14]] | |||
| -7.237 | |||
| -8.802 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''+7.473'' | |||
| ''+9.089'' | |||
|- | |||
| [[21/13]] | |||
| -8.022 | |||
| -9.756 | |||
|- | |||
| [[21/1]] | |||
| -8.501 | |||
| -10.339 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''+8.542'' | |||
| ''+10.389'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''+8.545'' | |||
| ''+10.392'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''-8.579'' | |||
| ''-10.434'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/2]]'' | |||
| ''+8.714'' | |||
| ''+10.599'' | |||
|- | |||
| [[21/19]] | |||
| -8.822 | |||
| -10.729 | |||
|- | |||
| [[19/5]] | |||
| -8.952 | |||
| -10.887 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''+9.103'' | |||
| ''+11.071'' | |||
|- | |||
| [[22/7]] | |||
| -9.137 | |||
| -11.113 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+9.272''' | |||
| '''+11.277''' | |||
|- | |||
| [[23/3]] | |||
| +9.275 | |||
| +11.280 | |||
|- | |||
| [[18/7]] | |||
| +9.378 | |||
| +11.406 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''-9.413'' | |||
| ''-11.448'' | |||
|- | |||
| [[13/5]] | |||
| -9.751 | |||
| -11.860 | |||
|- | |||
| [[25/17]] | |||
| -9.887 | |||
| -12.025 | |||
|- | |||
| [[13/3]] | |||
| +10.344 | |||
| +12.581 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''+10.615'' | |||
| ''+12.909'' | |||
|- | |||
| [[23/5]] | |||
| -10.821 | |||
| -13.160 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-10.823''' | |||
| '''-13.163''' | |||
|- | |||
| [[19/3]] | |||
| +11.144 | |||
| +13.553 | |||
|- | |||
| [[19/18]] | |||
| -11.380 | |||
| -13.840 | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''+11.551'' | |||
| ''+14.048'' | |||
|- | |||
| [[18/1]] | |||
| +11.701 | |||
| +14.230 | |||
|- | |||
| [[18/13]] | |||
| +12.180 | |||
| +14.813 | |||
|- | |||
| [[7/3]] | |||
| +13.145 | |||
| +15.987 | |||
|- | |||
| [[23/18]] | |||
| -13.249 | |||
| -16.113 | |||
|- | |||
| [[6/5]] | |||
| +13.251 | |||
| +16.116 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/11]]'' | |||
| ''-13.629'' | |||
| ''-16.576'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''+13.809'' | |||
| ''+16.795'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/4]]'' | |||
| ''+13.979'' | |||
| ''+17.001'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''+13.981'' | |||
| ''+17.004'' | |||
|- | |||
| [[17/10]] | |||
| -14.187 | |||
| -17.255 | |||
|- | |||
| [[25/2]] | |||
| -14.802 | |||
| -18.002 | |||
|- | |||
| [[22/9]] | |||
| +14.831 | |||
| +18.038 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''+15.050'' | |||
| ''+18.304'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/9]]'' | |||
| ''+15.389'' | |||
| ''+18.717'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''+15.495'' | |||
| ''+18.845'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/1]]'' | |||
| ''-15.529'' | |||
| ''-18.887'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''+15.850'' | |||
| ''+19.277'' | |||
|- | |||
| [[22/5]] | |||
| -16.087 | |||
| -19.566 | |||
|- | |||
| [[25/7]] | |||
| +16.223 | |||
| +19.730 | |||
|- | |||
| [[18/17]] | |||
| -16.731 | |||
| -20.349 | |||
|- | |||
| [[25/14]] | |||
| -17.124 | |||
| -20.826 | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''-17.497'' | |||
| ''-21.280'' | |||
|- | |||
| [[21/5]] | |||
| -17.773 | |||
| -21.616 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''+17.817'' | |||
| ''+21.670'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''+17.852'' | |||
| ''+21.711'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/9]]'' | |||
| ''-17.957'' | |||
| ''-21.840'' | |||
|- | |||
| [[25/19]] | |||
| +18.224 | |||
| +22.164 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''-18.296'' | |||
| ''-22.252'' | |||
|- | |||
| [[11/9]] | |||
| -18.515 | |||
| -22.519 | |||
|- | |||
| [[25/1]] | |||
| +18.545 | |||
| +22.554 | |||
|- | |||
| [[25/13]] | |||
| +19.024 | |||
| +23.137 | |||
|- | |||
| [[17/5]] | |||
| +19.160 | |||
| +23.302 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''-19.366'' | |||
| ''-23.553'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''-19.368'' | |||
| ''-23.556'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/6]]'' | |||
| ''+19.538'' | |||
| ''+23.762'' | |||
|- | |||
| [[25/23]] | |||
| +20.093 | |||
| +24.437 | |||
|- | |||
| [[5/3]] | |||
| +20.096 | |||
| +24.440 | |||
|- | |||
| [[23/9]] | |||
| +20.098 | |||
| +24.443 | |||
|- | |||
| [[7/6]] | |||
| -20.202 | |||
| -24.569 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''-20.236'' | |||
| ''-24.611'' | |||
|- | |||
| [[13/9]] | |||
| +21.167 | |||
| +25.744 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''-21.438'' | |||
| ''-26.073'' | |||
|- | |||
| [[9/1]] | |||
| -21.646 | |||
| -26.326 | |||
|- | |||
| [[19/9]] | |||
| +21.967 | |||
| +26.716 | |||
|- | |||
| [[19/6]] | |||
| -22.203 | |||
| -27.003 | |||
|- | |||
| [[6/1]] | |||
| +22.524 | |||
| +27.393 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''+22.558'' | |||
| ''+27.435'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''-22.732'' | |||
| ''-27.647'' | |||
|- | |||
| [[13/6]] | |||
| -23.003 | |||
| -27.976 | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/11]]'' | |||
| ''-23.516'' | |||
| ''-28.601'' | |||
|- | |||
| [[9/7]] | |||
| -23.968 | |||
| -29.151 | |||
|- | |||
| [[23/6]] | |||
| -24.072 | |||
| -29.276 | |||
|- | |||
| [[5/2]] | |||
| -24.074 | |||
| -29.279 | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''+24.244'' | |||
| ''+29.486'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/4]]'' | |||
| ''-24.632'' | |||
| ''-29.958'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[5/4]]'' | |||
| ''+24.802'' | |||
| ''+30.164'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/12]]'' | |||
| ''+24.804'' | |||
| ''+30.167'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/9]]'' | |||
| ''-24.908'' | |||
| ''-30.293'' | |||
|- | |||
| [[25/22]] | |||
| +25.360 | |||
| +30.843 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/12]]'' | |||
| ''+25.874'' | |||
| ''+31.468'' | |||
|- | |||
| [[17/7]] | |||
| +26.110 | |||
| +31.755 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''-26.318'' | |||
| ''-32.009'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/1]]'' | |||
| ''-26.353'' | |||
| ''-32.050'' | |||
|- | |||
| [[14/5]] | |||
| +26.397 | |||
| +32.104 | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''+26.673'' | |||
| ''+32.440'' | |||
|- | |||
| [[25/21]] | |||
| +27.046 | |||
| +32.893 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/2]]'' | |||
| ''+27.230'' | |||
| ''+33.117'' | |||
|- | |||
| [[17/12]] | |||
| -27.439 | |||
| -33.371 | |||
|- | |||
| [[19/17]] | |||
| -28.111 | |||
| -34.189 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''+28.432''' | |||
| '''+34.579''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''+28.641'' | |||
| ''+34.833'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/7]]'' | |||
| ''-28.675'' | |||
| ''-34.874'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/3]]'' | |||
| ''-28.781'' | |||
| ''-35.003'' | |||
|- | |||
| [[17/13]] | |||
| +28.911 | |||
| +35.162 | |||
|- | |||
| [[11/3]] | |||
| -29.339 | |||
| -35.682 | |||
|- | |||
| [[25/3]] | |||
| +29.368 | |||
| +35.718 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''-29.508'' | |||
| ''-35.888'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''+29.511'' | |||
| ''+35.891'' | |||
|- | |||
| [[23/17]] | |||
| -29.980 | |||
| -36.462 | |||
|- | |||
| [[17/15]] | |||
| +29.983 | |||
| +36.465 | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/11]]'' | |||
| ''-30.361'' | |||
| ''-36.925'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-30.580'' | |||
| ''-37.191'' | |||
|- | |||
| [[9/5]] | |||
| -30.919 | |||
| -37.604 | |||
|- | |||
| [[7/2]] | |||
| -31.025 | |||
| -37.732 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''-31.059'' | |||
| ''-37.774'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/10]]'' | |||
| ''+31.103'' | |||
| ''+37.827'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''+31.379'' | |||
| ''+38.164'' | |||
|- | |||
| [[21/11]] | |||
| +31.661 | |||
| +38.506 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/9]]'' | |||
| ''-32.145'' | |||
| ''-39.095'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''-32.619'' | |||
| ''-39.672'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/5]]'' | |||
| ''+32.789'' | |||
| ''+39.878'' | |||
|- | |||
| [[19/2]] | |||
| -33.026 | |||
| -40.167 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''+33.347''' | |||
| '''+40.557''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-33.381'' | |||
| ''-40.598'' | |||
|- | |||
| [[13/2]] | |||
| -33.826 | |||
| -41.139 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/11]]'' | |||
| ''+33.905'' | |||
| ''+41.235'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''+34.074'' | |||
| ''+41.441'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''-34.689'' | |||
| ''-42.189'' | |||
|- | |||
| [[23/2]] | |||
| -34.895 | |||
| -42.439 | |||
|- | |||
| [[15/2]] | |||
| -34.898 | |||
| -42.442 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''-35.067'' | |||
| ''-42.649'' | |||
|- | |||
| [[22/17]] | |||
| -35.247 | |||
| -42.867 | |||
|- | |||
| [[19/14]] | |||
| -35.348 | |||
| -42.991 | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/5]]'' | |||
| ''-35.625'' | |||
| ''-43.327'' | |||
|- | |||
| [[14/1]] | |||
| +35.669 | |||
| +43.381 | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/3]]'' | |||
| ''-35.731'' | |||
| ''-43.456'' | |||
|- | |||
| [[14/13]] | |||
| +36.148 | |||
| +43.963 | |||
|- | |||
| [[21/17]] | |||
| -36.933 | |||
| -44.918 | |||
|- | |||
| [[23/14]] | |||
| -37.217 | |||
| -45.264 | |||
|- | |||
| [[15/14]] | |||
| -37.220 | |||
| -45.267 | |||
|- | |||
| [[25/12]] | |||
| -37.326 | |||
| -45.395 | |||
|- style="background-color: #cccccc;" | |||
| ''[[3/2]]'' | |||
| ''+38.053'' | |||
| ''+46.280'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/10]]'' | |||
| ''+38.056'' | |||
| ''+46.283'' | |||
|- | |||
| [[17/4]] | |||
| -38.262 | |||
| -46.534 | |||
|- | |||
| [[15/11]] | |||
| +38.611 | |||
| +46.959 | |||
|- | |||
| [[23/11]] | |||
| +38.614 | |||
| +46.962 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/10]]'' | |||
| ''+39.125'' | |||
| ''+47.584'' | |||
|- | |||
| [[17/3]] | |||
| +39.255 | |||
| +47.742 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''-39.464'' | |||
| ''-47.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/1]]'' | |||
| ''-39.604'' | |||
| ''-48.166'' | |||
|- | |||
| [[13/11]] | |||
| +39.683 | |||
| +48.262 | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/7]]'' | |||
| ''+39.739'' | |||
| ''+48.331'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/10]]'' | |||
| ''+39.924'' | |||
| ''+48.556'' | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-40.162''' | |||
| '''-48.845''' | |||
|- | |||
| [[25/9]] | |||
| +40.191 | |||
| +48.881 | |||
|- | |||
| [[10/7]] | |||
| +40.297 | |||
| +49.010 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''-40.331'' | |||
| ''-49.051'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/2]]'' | |||
| ''+40.375'' | |||
| ''+49.105'' | |||
|- | |||
| [[19/11]] | |||
| +40.482 | |||
| +49.235 | |||
|} | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 25-integer-limit intervals in 45zpi (by patent val mapping) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[23/15]] | |||
| +0.002 | |||
| +0.003 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''+0.321''' | |||
| '''+0.390''' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-0.479''' | |||
| '''-0.583''' | |||
|- | |||
| [[19/13]] | |||
| +0.800 | |||
| +0.973 | |||
|- | |||
| [[23/13]] | |||
| -1.069 | |||
| -1.300 | |||
|- | |||
| [[15/13]] | |||
| -1.072 | |||
| -1.303 | |||
|- | |||
| '''[[23/1]]''' | |||
| '''-1.548''' | |||
| '''-1.883''' | |||
|- | |||
| [[15/1]] | |||
| -1.551 | |||
| -1.886 | |||
|- | |||
| [[22/21]] | |||
| +1.686 | |||
| +2.051 | |||
|- | |||
| [[23/19]] | |||
| -1.869 | |||
| -2.273 | |||
|- | |||
| [[19/15]] | |||
| +1.871 | |||
| +2.276 | |||
|- | |||
| [[19/7]] | |||
| -2.002 | |||
| -2.434 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+2.322''' | |||
| '''+2.824''' | |||
|- | |||
| [[18/5]] | |||
| +2.428 | |||
| +2.953 | |||
|- | |||
| [[13/7]] | |||
| -2.801 | |||
| -3.407 | |||
|- | |||
| [[23/7]] | |||
| -3.870 | |||
| -4.707 | |||
|- | |||
| [[15/7]] | |||
| -3.873 | |||
| -4.710 | |||
|- | |||
| [[25/6]] | |||
| -3.979 | |||
| -4.839 | |||
|- | |||
| [[22/3]] | |||
| +4.008 | |||
| +4.875 | |||
|- | |||
| [[17/2]] | |||
| -4.915 | |||
| -5.977 | |||
|- | |||
| [[22/15]] | |||
| -5.264 | |||
| -6.402 | |||
|- | |||
| [[23/22]] | |||
| +5.267 | |||
| +6.405 | |||
|- | |||
| [[17/6]] | |||
| +5.908 | |||
| +7.186 | |||
|- | |||
| [[22/13]] | |||
| -6.336 | |||
| -7.706 | |||
|- | |||
| [[22/1]] | |||
| -6.815 | |||
| -8.288 | |||
|- | |||
| [[25/18]] | |||
| +6.844 | |||
| +8.324 | |||
|- | |||
| [[7/5]] | |||
| -6.950 | |||
| -8.453 | |||
|- | |||
| [[23/21]] | |||
| +6.953 | |||
| +8.456 | |||
|- | |||
| [[22/19]] | |||
| -7.136 | |||
| -8.678 | |||
|- | |||
| [[17/14]] | |||
| -7.237 | |||
| -8.802 | |||
|- | |||
| [[21/13]] | |||
| -8.022 | |||
| -9.756 | |||
|- | |||
| [[21/1]] | |||
| -8.501 | |||
| -10.339 | |||
|- | |||
| [[21/19]] | |||
| -8.822 | |||
| -10.729 | |||
|- | |||
| [[19/5]] | |||
| -8.952 | |||
| -10.887 | |||
|- | |||
| [[22/7]] | |||
| -9.137 | |||
| -11.113 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+9.272''' | |||
| '''+11.277''' | |||
|- | |||
| [[23/3]] | |||
| +9.275 | |||
| +11.280 | |||
|- | |||
| [[18/7]] | |||
| +9.378 | |||
| +11.406 | |||
|- | |||
| [[13/5]] | |||
| -9.751 | |||
| -11.860 | |||
|- | |||
| [[25/17]] | |||
| -9.887 | |||
| -12.025 | |||
|- | |||
| [[13/3]] | |||
| +10.344 | |||
| +12.581 | |||
|- | |||
| [[23/5]] | |||
| -10.821 | |||
| -13.160 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-10.823''' | |||
| '''-13.163''' | |||
|- | |||
| [[19/3]] | |||
| +11.144 | |||
| +13.553 | |||
|- | |||
| [[19/18]] | |||
| -11.380 | |||
| -13.840 | |||
|- | |||
| [[18/1]] | |||
| +11.701 | |||
| +14.230 | |||
|- | |||
| [[18/13]] | |||
| +12.180 | |||
| +14.813 | |||
|- | |||
| [[7/3]] | |||
| +13.145 | |||
| +15.987 | |||
|- | |||
| [[23/18]] | |||
| -13.249 | |||
| -16.113 | |||
|- | |||
| [[6/5]] | |||
| +13.251 | |||
| +16.116 | |||
|- | |||
| [[17/10]] | |||
| -14.187 | |||
| -17.255 | |||
|- | |||
| [[25/2]] | |||
| -14.802 | |||
| -18.002 | |||
|- | |||
| [[22/9]] | |||
| +14.831 | |||
| +18.038 | |||
|- | |||
| [[22/5]] | |||
| -16.087 | |||
| -19.566 | |||
|- | |||
| [[25/7]] | |||
| +16.223 | |||
| +19.730 | |||
|- | |||
| [[18/17]] | |||
| -16.731 | |||
| -20.349 | |||
|- | |||
| [[25/14]] | |||
| -17.124 | |||
| -20.826 | |||
|- | |||
| [[21/5]] | |||
| -17.773 | |||
| -21.616 | |||
|- | |||
| [[25/19]] | |||
| +18.224 | |||
| +22.164 | |||
|- | |||
| [[11/9]] | |||
| -18.515 | |||
| -22.519 | |||
|- | |||
| [[25/1]] | |||
| +18.545 | |||
| +22.554 | |||
|- | |||
| [[25/13]] | |||
| +19.024 | |||
| +23.137 | |||
|- | |||
| [[17/5]] | |||
| +19.160 | |||
| +23.302 | |||
|- | |||
| [[25/23]] | |||
| +20.093 | |||
| +24.437 | |||
|- | |||
| [[5/3]] | |||
| +20.096 | |||
| +24.440 | |||
|- | |||
| [[23/9]] | |||
| +20.098 | |||
| +24.443 | |||
|- | |||
| [[7/6]] | |||
| -20.202 | |||
| -24.569 | |||
|- | |||
| [[13/9]] | |||
| +21.167 | |||
| +25.744 | |||
|- | |||
| [[9/1]] | |||
| -21.646 | |||
| -26.326 | |||
|- | |||
| [[19/9]] | |||
| +21.967 | |||
| +26.716 | |||
|- | |||
| [[19/6]] | |||
| -22.203 | |||
| -27.003 | |||
|- | |||
| [[6/1]] | |||
| +22.524 | |||
| +27.393 | |||
|- | |||
| [[13/6]] | |||
| -23.003 | |||
| -27.976 | |||
|- | |||
| [[9/7]] | |||
| -23.968 | |||
| -29.151 | |||
|- | |||
| [[23/6]] | |||
| -24.072 | |||
| -29.276 | |||
|- | |||
| [[5/2]] | |||
| -24.074 | |||
| -29.279 | |||
|- | |||
| [[25/22]] | |||
| +25.360 | |||
| +30.843 | |||
|- | |||
| [[17/7]] | |||
| +26.110 | |||
| +31.755 | |||
|- | |||
| [[14/5]] | |||
| +26.397 | |||
| +32.104 | |||
|- | |||
| [[25/21]] | |||
| +27.046 | |||
| +32.893 | |||
|- | |||
| [[17/12]] | |||
| -27.439 | |||
| -33.371 | |||
|- | |||
| [[19/17]] | |||
| -28.111 | |||
| -34.189 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''+28.432''' | |||
| '''+34.579''' | |||
|- | |||
| [[17/13]] | |||
| +28.911 | |||
| +35.162 | |||
|- | |||
| [[11/3]] | |||
| -29.339 | |||
| -35.682 | |||
|- | |||
| [[25/3]] | |||
| +29.368 | |||
| +35.718 | |||
|- | |||
| [[23/17]] | |||
| -29.980 | |||
| -36.462 | |||
|- | |||
| [[17/15]] | |||
| +29.983 | |||
| +36.465 | |||
|- | |||
| [[9/5]] | |||
| -30.919 | |||
| -37.604 | |||
|- | |||
| [[7/2]] | |||
| -31.025 | |||
| -37.732 | |||
|- | |||
| [[21/11]] | |||
| +31.661 | |||
| +38.506 | |||
|- | |||
| [[19/2]] | |||
| -33.026 | |||
| -40.167 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''+33.347''' | |||
| '''+40.557''' | |||
|- | |||
| [[13/2]] | |||
| -33.826 | |||
| -41.139 | |||
|- | |||
| [[23/2]] | |||
| -34.895 | |||
| -42.439 | |||
|- | |||
| [[15/2]] | |||
| -34.898 | |||
| -42.442 | |||
|- | |||
| [[22/17]] | |||
| -35.247 | |||
| -42.867 | |||
|- | |||
| [[19/14]] | |||
| -35.348 | |||
| -42.991 | |||
|- | |||
| [[14/1]] | |||
| +35.669 | |||
| +43.381 | |||
|- | |||
| [[14/13]] | |||
| +36.148 | |||
| +43.963 | |||
|- | |||
| [[21/17]] | |||
| -36.933 | |||
| -44.918 | |||
|- | |||
| [[23/14]] | |||
| -37.217 | |||
| -45.264 | |||
|- | |||
| [[15/14]] | |||
| -37.220 | |||
| -45.267 | |||
|- | |||
| [[25/12]] | |||
| -37.326 | |||
| -45.395 | |||
|- | |||
| [[17/4]] | |||
| -38.262 | |||
| -46.534 | |||
|- | |||
| [[15/11]] | |||
| +38.611 | |||
| +46.959 | |||
|- | |||
| [[23/11]] | |||
| +38.614 | |||
| +46.962 | |||
|- | |||
| [[17/3]] | |||
| +39.255 | |||
| +47.742 | |||
|- | |||
| [[13/11]] | |||
| +39.683 | |||
| +48.262 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-40.162''' | |||
| '''-48.845''' | |||
|- | |- | ||
| | | [[25/9]] | ||
| +40.191 | |||
| +48.881 | |||
| | |||
| | |||
|- | |- | ||
| | | [[10/7]] | ||
| +40.297 | |||
| +49.010 | |||
| | |||
| | |||
|- | |- | ||
| 73 | | [[19/11]] | ||
| | | +40.482 | ||
| ''' | | +49.235 | ||
| | |- style="background-color: #cccccc;" | ||
| | | ''[[21/2]]'' | ||
| ''-41.848'' | |||
| ''-50.895'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/10]]'' | |||
| ''-42.299'' | |||
| ''-51.444'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/7]]'' | |||
| ''-42.484'' | |||
| ''-51.669'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/1]]'' | |||
| ''+42.619'' | |||
| ''+51.834'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/10]]'' | |||
| ''-43.098'' | |||
| ''-52.416'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/10]]'' | |||
| ''-44.168'' | |||
| ''-53.717'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[3/2]]'' | |||
| ''-44.170'' | |||
| ''-53.720'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/3]]'' | |||
| ''+46.492'' | |||
| ''+56.544'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/5]]'' | |||
| ''+46.598'' | |||
| ''+56.673'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''+47.534'' | |||
| ''+57.811'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''-48.149'' | |||
| ''-58.559'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/5]]'' | |||
| ''-49.434'' | |||
| ''-60.122'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/9]]'' | |||
| ''+50.078'' | |||
| ''+60.905'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/10]]'' | |||
| ''-51.120'' | |||
| ''-62.173'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/11]]'' | |||
| ''+51.862'' | |||
| ''+63.075'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/3]]'' | |||
| ''+53.442'' | |||
| ''+64.997'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/7]]'' | |||
| ''+53.548'' | |||
| ''+65.126'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/2]]'' | |||
| ''-54.993'' | |||
| ''-66.883'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''-55.550'' | |||
| ''-67.560'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/1]]'' | |||
| ''+55.871'' | |||
| ''+67.950'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/12]]'' | |||
| ''-56.350'' | |||
| ''-68.532'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/9]]'' | |||
| ''+57.315'' | |||
| ''+69.707'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/12]]'' | |||
| ''-57.419'' | |||
| ''-69.833'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[5/4]]'' | |||
| ''-57.421'' | |||
| ''-69.836'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/11]]'' | |||
| ''+58.707'' | |||
| ''+71.399'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''+60.785'' | |||
| ''+73.927'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/6]]'' | |||
| ''-62.685'' | |||
| ''-76.238'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/9]]'' | |||
| ''+64.266'' | |||
| ''+78.160'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''-64.372'' | |||
| ''-78.289'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''-66.373'' | |||
| ''-80.723'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/1]]'' | |||
| ''+66.694'' | |||
| ''+81.113'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''-67.173'' | |||
| ''-81.696'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''-68.242'' | |||
| ''-82.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/4]]'' | |||
| ''-68.244'' | |||
| ''-82.999'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/11]]'' | |||
| ''+68.594'' | |||
| ''+83.424'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''-70.672'' | |||
| ''-85.952'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''-71.609'' | |||
| ''-87.091'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/2]]'' | |||
| ''-73.509'' | |||
| ''-89.401'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''+73.644'' | |||
| ''+89.566'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''-75.195'' | |||
| ''-91.452'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/19]]'' | |||
| ''+75.646'' | |||
| ''+92.000'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/11]]'' | |||
| ''+75.831'' | |||
| ''+92.226'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''+75.966'' | |||
| ''+92.390'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''+76.445'' | |||
| ''+92.973'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''-77.514'' | |||
| ''-94.273'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/3]]'' | |||
| ''+77.517'' | |||
| ''+94.276'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''+79.945'' | |||
| ''+97.229'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''-81.496'' | |||
| ''-99.115'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/10]]'' | |||
| ''-82.781'' | |||
| ''-100.679'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''-84.467'' | |||
| ''-102.729'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/3]]'' | |||
| ''+86.789'' | |||
| ''+105.553'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/7]]'' | |||
| ''+86.895'' | |||
| ''+105.682'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/4]]'' | |||
| ''-88.340'' | |||
| ''-107.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''+88.897'' | |||
| ''+108.116'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''+89.217'' | |||
| ''+108.506'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''+89.696'' | |||
| ''+109.089'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''+90.766'' | |||
| ''+110.389'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''+90.768'' | |||
| ''+110.392'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''+96.032'' | |||
| ''+116.795'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/9]]'' | |||
| ''+97.613'' | |||
| ''+118.717'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''+97.718'' | |||
| ''+118.845'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''-99.720'' | |||
| ''-121.280'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''+100.041'' | |||
| ''+121.670'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''-100.520'' | |||
| ''-122.252'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''-101.589'' | |||
| ''-123.553'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''-101.591'' | |||
| ''-123.556'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''-104.955'' | |||
| ''-127.647'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/4]]'' | |||
| ''-106.855'' | |||
| ''-129.958'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''-108.542'' | |||
| ''-132.009'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''+110.864'' | |||
| ''+134.833'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''-114.842'' | |||
| ''-139.672'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/11]]'' | |||
| ''+116.128'' | |||
| ''+141.235'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''-121.687'' | |||
| ''-147.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''+124.115'' | |||
| ''+150.949'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''+129.379'' | |||
| ''+157.351'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''+131.065'' | |||
| ''+159.402'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''-133.067'' | |||
| ''-161.836'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''+133.387'' | |||
| ''+162.226'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''+133.866'' | |||
| ''+162.809'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''-134.936'' | |||
| ''-164.109'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''+134.938'' | |||
| ''+164.112'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''-140.202'' | |||
| ''-170.514'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''-141.888'' | |||
| ''-172.565'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''+144.211'' | |||
| ''+175.389'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''+155.034'' | |||
| ''+188.552'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''+173.549'' | |||
| ''+211.071'' | |||
|} | |} | ||
{{Stub}} | {{Stub}} | ||
[[Category:Zeta peak indexes]] | [[Category:Zeta peak indexes]] |
Latest revision as of 01:07, 20 August 2025
45 zeta peak index (abbreviated 45zpi), is the equal-step tuning system obtained from the 45th peak of the Riemann zeta function.
Tuning | Strength | Closest edo | Integer limit | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per 8ve |
Step size (cents) |
Height | Integral | Gap | Edo | Octave (cents) | Consistent | Distinct | |
Size | Stretch | |||||||||
45zpi | 14.594435 | 82.223123 | 2.09773 | 0.344839 | 10.5948 | 15edo | 1233.346849 | 33.346849 | 2 | 2 |
Theory
45zpi is characterized by a very broad octave error, yet it maintains a quite decent zeta strength. This combination makes it an ideal candidate for no-octave tuning applications.
No other zeta peak indexes exhibit both a larger octave error and greater zeta height than 45zpi.
45zpi supports a complex chord structure with ratios of 1:3:4:5:7:9:13:15:18:19:20:21:22:23:24:25, which further exemplifies its capabilities.
The closest zeta peak indexes to 45zpi that exceed its strength are 42zpi and 47zpi, though 43zpi is nearly as strong as 45zpi.
Harmonic series
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +33.3 | -10.8 | -15.5 | +9.3 | +22.5 | +2.3 | +17.8 | -21.6 | -39.6 | -40.2 | -26.4 | -0.5 | +35.7 | -1.6 | -31.1 |
Relative (%) | +40.6 | -13.2 | -18.9 | +11.3 | +27.4 | +2.8 | +21.7 | -26.3 | -48.2 | -48.8 | -32.1 | -0.6 | +43.4 | -1.9 | -37.8 | |
Step | 15 | 23 | 29 | 34 | 38 | 41 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 57 | 58 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +28.4 | +11.7 | +0.3 | -6.3 | -8.5 | -6.8 | -1.5 | +7.0 | +18.5 | +32.9 | -32.5 | -13.2 | +8.3 | +31.8 | -25.0 | +2.3 |
Relative (%) | +34.6 | +14.2 | +0.4 | -7.6 | -10.3 | -8.3 | -1.9 | +8.5 | +22.6 | +40.0 | -39.5 | -16.1 | +10.1 | +38.7 | -30.4 | +2.8 | |
Step | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 69 | 70 | 71 | 72 | 72 | 73 |
Intervals
JI ratios are comprised of 25-integer-limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 13 steps Limma = 4 steps Apotome = 9 steps | |||
Degree | Cents | Ratios | Ups and downs notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 82.223 | 25/24, 24/23, 23/22, 22/21, 21/20, 20/19, 19/18, 18/17, 17/16, 16/15, 15/14 | ^m2 | 5 |
2 | 164.446 | 14/13, 13/12, 25/23, 12/11, 23/21, 11/10, 21/19, 10/9, 19/17, 9/8 | vvvM2 | 10 |
3 | 246.669 | 17/15, 25/22, 8/7, 23/20, 15/13, 22/19, 7/6, 20/17 | ^^M2, vvm3 | 15 |
4 | 328.892 | 13/11, 19/16, 25/21, 6/5, 23/19, 17/14, 11/9, 16/13, 21/17 | ^^^m3 | 20 |
5 | 411.116 | 5/4, 24/19, 19/15, 14/11, 23/18, 9/7, 22/17 | vM3 | 25 |
6 | 493.339 | 13/10, 17/13, 21/16, 25/19, 4/3, 23/17, 19/14 | P4 | 30 |
7 | 575.562 | 15/11, 11/8, 18/13, 25/18, 7/5, 24/17, 17/12 | v4A4 | 35 |
8 | 657.785 | 10/7, 23/16, 13/9, 16/11, 19/13, 22/15, 25/17 | vvv5 | 40 |
9 | 740.008 | 3/2, 23/15, 20/13, 17/11, 14/9, 25/16 | ^^5, vvm6 | 45 |
10 | 822.231 | 11/7, 19/12, 8/5, 21/13, 13/8, 18/11, 23/14 | ^^^m6 | 50 |
11 | 904.454 | 5/3, 22/13, 17/10, 12/7 | vM6 | 55 |
12 | 986.677 | 19/11, 7/4, 23/13, 16/9, 25/14, 9/5 | m7 | 60 |
13 | 1068.901 | 20/11, 11/6, 24/13, 13/7, 15/8, 17/9 | v4M7 | 65 |
14 | 1151.124 | 19/10, 21/11, 23/12, 25/13 | ^M7 | 70 |
15 | 1233.347 | 2/1, 25/12 | ^^1 +1 oct, vvm2 +1 oct | 75 |
16 | 1315.570 | 23/11, 21/10, 19/9, 17/8, 15/7, 13/6, 24/11 | ^^^m2 +1 oct | 80 |
17 | 1397.793 | 11/5, 20/9, 9/4, 25/11, 16/7 | vM2 +1 oct | 85 |
18 | 1480.016 | 23/10, 7/3, 19/8, 12/5 | m3 +1 oct | 90 |
19 | 1562.239 | 17/7, 22/9, 5/2 | v4M3 +1 oct | 95 |
20 | 1644.462 | 23/9, 18/7, 13/5, 21/8 | ^M3 +1 oct | 100 |
21 | 1726.686 | 8/3, 19/7, 11/4 | ^^4 +1 oct | 105 |
22 | 1808.909 | 25/9, 14/5, 17/6, 20/7, 23/8 | ^^^d5 +1 oct | 110 |
23 | 1891.132 | 3/1 | v5 +1 oct | 115 |
24 | 1973.355 | 25/8, 22/7, 19/6, 16/5 | m6 +1 oct | 120 |
25 | 2055.578 | 13/4, 23/7, 10/3 | v4M6 +1 oct | 125 |
26 | 2137.801 | 17/5, 24/7, 7/2 | ^M6 +1 oct | 130 |
27 | 2220.024 | 25/7, 18/5, 11/3 | ^^m7 +1 oct | 135 |
28 | 2302.247 | 15/4, 19/5, 23/6 | vvM7 +1 oct | 140 |
29 | 2384.471 | 4/1 | v1 +2 oct | 145 |
30 | 2466.694 | 25/6, 21/5, 17/4 | m2 +2 oct | 150 |
31 | 2548.917 | 13/3, 22/5 | v4M2 +2 oct | 155 |
32 | 2631.140 | 9/2, 23/5, 14/3 | ^M2 +2 oct | 160 |
33 | 2713.363 | 19/4, 24/5 | ^^m3 +2 oct | 165 |
34 | 2795.586 | 5/1 | vvM3 +2 oct | 170 |
35 | 2877.809 | 21/4, 16/3 | v4 +2 oct | 175 |
36 | 2960.032 | 11/2 | ^44 +2 oct | 180 |
37 | 3042.256 | 17/3, 23/4 | v45 +2 oct | 185 |
38 | 3124.479 | 6/1 | ^5 +2 oct | 190 |
39 | 3206.702 | 25/4, 19/3, 13/2 | ^^m6 +2 oct | 195 |
40 | 3288.925 | 20/3 | vvM6 +2 oct | 200 |
41 | 3371.148 | 7/1 | vm7 +2 oct | 205 |
42 | 3453.371 | 22/3, 15/2 | ^4m7 +2 oct | 210 |
43 | 3535.594 | 23/3 | M7 +2 oct | 215 |
44 | 3617.817 | 8/1 | ^1 +3 oct | 220 |
45 | 3700.041 | 25/3, 17/2 | ^^m2 +3 oct | 225 |
46 | 3782.264 | 9/1 | vvM2 +3 oct | 230 |
47 | 3864.487 | 19/2 | vm3 +3 oct | 235 |
48 | 3946.710 | 10/1 | ^4m3 +3 oct | 240 |
49 | 4028.933 | M3 +3 oct | 245 | |
50 | 4111.156 | 21/2, 11/1 | ^4 +3 oct | 250 |
51 | 4193.379 | 23/2 | vvvA4 +3 oct | 255 |
52 | 4275.602 | 12/1 | vv5 +3 oct | 260 |
53 | 4357.826 | 25/2 | vm6 +3 oct | 265 |
54 | 4440.049 | 13/1 | ^4m6 +3 oct | 270 |
55 | 4522.272 | M6 +3 oct | 275 | |
56 | 4604.495 | 14/1 | ^m7 +3 oct | 280 |
57 | 4686.718 | 15/1 | vvvM7 +3 oct | 285 |
58 | 4768.941 | 16/1 | ^^M7 +3 oct, vv1 +4 oct | 290 |
59 | 4851.164 | vm2 +4 oct | 295 | |
60 | 4933.387 | 17/1 | ^4m2 +4 oct | 300 |
61 | 5015.611 | 18/1 | M2 +4 oct | 305 |
62 | 5097.834 | 19/1 | ^m3 +4 oct | 310 |
63 | 5180.057 | 20/1 | vvvM3 +4 oct | 315 |
64 | 5262.280 | 21/1 | ^^M3 +4 oct, vv4 +4 oct | 320 |
65 | 5344.503 | 22/1 | ^^^4 +4 oct | 325 |
66 | 5426.726 | 23/1 | ^4d5 +4 oct | 330 |
67 | 5508.949 | 24/1 | P5 +4 oct | 335 |
68 | 5591.172 | 25/1 | ^m6 +4 oct | 340 |
Approximation to JI
Interval mappings
The following tables show how 25-integer-limit intervals are represented in 45zpi. Prime harmonics are in bold; inconsistent intervals are in italics.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
23/15 | +0.002 | +0.003 |
19/1 | +0.321 | +0.390 |
13/1 | -0.479 | -0.583 |
11/10 | -0.558 | -0.679 |
25/8 | +0.728 | +0.885 |
19/13 | +0.800 | +0.973 |
23/13 | -1.069 | -1.300 |
15/13 | -1.072 | -1.303 |
23/1 | -1.548 | -1.883 |
15/1 | -1.551 | -1.886 |
22/21 | +1.686 | +2.051 |
23/19 | -1.869 | -2.273 |
19/15 | +1.871 | +2.276 |
19/7 | -2.002 | -2.434 |
21/20 | -2.244 | -2.729 |
24/5 | -2.278 | -2.771 |
7/1 | +2.322 | +2.824 |
18/5 | +2.428 | +2.953 |
13/7 | -2.801 | -3.407 |
23/7 | -3.870 | -4.707 |
15/7 | -3.873 | -4.710 |
25/6 | -3.979 | -4.839 |
22/3 | +4.008 | +4.875 |
20/3 | +4.566 | +5.553 |
24/7 | +4.672 | +5.682 |
4/3 | -4.706 | -5.724 |
23/20 | +4.709 | +5.727 |
17/2 | -4.915 | -5.977 |
22/15 | -5.264 | -6.402 |
23/22 | +5.267 | +6.405 |
20/13 | -5.778 | -7.027 |
17/6 | +5.908 | +7.186 |
9/4 | -6.117 | -7.439 |
20/1 | -6.257 | -7.610 |
22/13 | -6.336 | -7.706 |
14/11 | -6.392 | -7.774 |
20/19 | -6.578 | -8.000 |
24/19 | +6.674 | +8.116 |
22/1 | -6.815 | -8.288 |
25/18 | +6.844 | +8.324 |
7/5 | -6.950 | -8.453 |
23/21 | +6.953 | +8.456 |
24/1 | +6.994 | +8.506 |
21/4 | +7.028 | +8.548 |
22/19 | -7.136 | -8.678 |
17/14 | -7.237 | -8.802 |
24/13 | +7.473 | +9.089 |
21/13 | -8.022 | -9.756 |
21/1 | -8.501 | -10.339 |
24/23 | +8.542 | +10.389 |
8/5 | +8.545 | +10.392 |
20/7 | -8.579 | -10.434 |
11/2 | +8.714 | +10.599 |
21/19 | -8.822 | -10.729 |
19/5 | -8.952 | -10.887 |
16/11 | +9.103 | +11.071 |
22/7 | -9.137 | -11.113 |
5/1 | +9.272 | +11.277 |
23/3 | +9.275 | +11.280 |
18/7 | +9.378 | +11.406 |
16/9 | -9.413 | -11.448 |
13/5 | -9.751 | -11.860 |
25/17 | -9.887 | -12.025 |
13/3 | +10.344 | +12.581 |
17/8 | +10.615 | +12.909 |
23/5 | -10.821 | -13.160 |
3/1 | -10.823 | -13.163 |
19/3 | +11.144 | +13.553 |
19/18 | -11.380 | -13.840 |
25/24 | +11.551 | +14.048 |
18/1 | +11.701 | +14.230 |
18/13 | +12.180 | +14.813 |
7/3 | +13.145 | +15.987 |
23/18 | -13.249 | -16.113 |
6/5 | +13.251 | +16.116 |
17/11 | -13.629 | -16.576 |
12/11 | +13.809 | +16.795 |
15/4 | +13.979 | +17.001 |
23/4 | +13.981 | +17.004 |
17/10 | -14.187 | -17.255 |
25/2 | -14.802 | -18.002 |
22/9 | +14.831 | +18.038 |
13/4 | +15.050 | +18.304 |
20/9 | +15.389 | +18.717 |
8/7 | +15.495 | +18.845 |
4/1 | -15.529 | -18.887 |
19/4 | +15.850 | +19.277 |
22/5 | -16.087 | -19.566 |
25/7 | +16.223 | +19.730 |
18/17 | -16.731 | -20.349 |
25/14 | -17.124 | -20.826 |
19/8 | -17.497 | -21.280 |
21/5 | -17.773 | -21.616 |
8/1 | +17.817 | +21.670 |
7/4 | +17.852 | +21.711 |
10/9 | -17.957 | -21.840 |
25/19 | +18.224 | +22.164 |
13/8 | -18.296 | -22.252 |
11/9 | -18.515 | -22.519 |
25/1 | +18.545 | +22.554 |
25/13 | +19.024 | +23.137 |
17/5 | +19.160 | +23.302 |
23/8 | -19.366 | -23.553 |
15/8 | -19.368 | -23.556 |
11/6 | +19.538 | +23.762 |
25/23 | +20.093 | +24.437 |
5/3 | +20.096 | +24.440 |
23/9 | +20.098 | +24.443 |
7/6 | -20.202 | -24.569 |
16/3 | -20.236 | -24.611 |
13/9 | +21.167 | +25.744 |
24/17 | -21.438 | -26.073 |
9/1 | -21.646 | -26.326 |
19/9 | +21.967 | +26.716 |
19/6 | -22.203 | -27.003 |
6/1 | +22.524 | +27.393 |
21/16 | +22.558 | +27.435 |
17/16 | -22.732 | -27.647 |
13/6 | -23.003 | -27.976 |
25/11 | -23.516 | -28.601 |
9/7 | -23.968 | -29.151 |
23/6 | -24.072 | -29.276 |
5/2 | -24.074 | -29.279 |
11/8 | +24.244 | +29.486 |
11/4 | -24.632 | -29.958 |
5/4 | +24.802 | +30.164 |
23/12 | +24.804 | +30.167 |
14/9 | -24.908 | -30.293 |
25/22 | +25.360 | +30.843 |
13/12 | +25.874 | +31.468 |
17/7 | +26.110 | +31.755 |
21/8 | -26.318 | -32.009 |
12/1 | -26.353 | -32.050 |
14/5 | +26.397 | +32.104 |
19/12 | +26.673 | +32.440 |
25/21 | +27.046 | +32.893 |
9/2 | +27.230 | +33.117 |
17/12 | -27.439 | -33.371 |
19/17 | -28.111 | -34.189 |
17/1 | +28.432 | +34.579 |
8/3 | +28.641 | +34.833 |
12/7 | -28.675 | -34.874 |
10/3 | -28.781 | -35.003 |
17/13 | +28.911 | +35.162 |
11/3 | -29.339 | -35.682 |
25/3 | +29.368 | +35.718 |
16/15 | -29.508 | -35.888 |
23/16 | +29.511 | +35.891 |
23/17 | -29.980 | -36.462 |
17/15 | +29.983 | +36.465 |
18/11 | -30.361 | -36.925 |
16/13 | -30.580 | -37.191 |
9/5 | -30.919 | -37.604 |
7/2 | -31.025 | -37.732 |
16/1 | -31.059 | -37.774 |
21/10 | +31.103 | +37.827 |
19/16 | +31.379 | +38.164 |
21/11 | +31.661 | +38.506 |
17/9 | -32.145 | -39.095 |
25/16 | -32.619 | -39.672 |
11/5 | +32.789 | +39.878 |
19/2 | -33.026 | -40.167 |
2/1 | +33.347 | +40.557 |
16/7 | -33.381 | -40.598 |
13/2 | -33.826 | -41.139 |
20/11 | +33.905 | +41.235 |
25/4 | +34.074 | +41.441 |
20/17 | -34.689 | -42.189 |
23/2 | -34.895 | -42.439 |
15/2 | -34.898 | -42.442 |
24/11 | -35.067 | -42.649 |
22/17 | -35.247 | -42.867 |
19/14 | -35.348 | -42.991 |
12/5 | -35.625 | -43.327 |
14/1 | +35.669 | +43.381 |
14/3 | -35.731 | -43.456 |
14/13 | +36.148 | +43.963 |
21/17 | -36.933 | -44.918 |
23/14 | -37.217 | -45.264 |
15/14 | -37.220 | -45.267 |
25/12 | -37.326 | -45.395 |
3/2 | +38.053 | +46.280 |
23/10 | +38.056 | +46.283 |
17/4 | -38.262 | -46.534 |
15/11 | +38.611 | +46.959 |
23/11 | +38.614 | +46.962 |
13/10 | +39.125 | +47.584 |
17/3 | +39.255 | +47.742 |
9/8 | -39.464 | -47.996 |
10/1 | -39.604 | -48.166 |
13/11 | +39.683 | +48.262 |
11/7 | +39.739 | +48.331 |
19/10 | +39.924 | +48.556 |
11/1 | -40.162 | -48.845 |
25/9 | +40.191 | +48.881 |
10/7 | +40.297 | +49.010 |
16/5 | -40.331 | -49.051 |
21/2 | +40.375 | +49.105 |
19/11 | +40.482 | +49.235 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
23/15 | +0.002 | +0.003 |
19/1 | +0.321 | +0.390 |
13/1 | -0.479 | -0.583 |
19/13 | +0.800 | +0.973 |
23/13 | -1.069 | -1.300 |
15/13 | -1.072 | -1.303 |
23/1 | -1.548 | -1.883 |
15/1 | -1.551 | -1.886 |
22/21 | +1.686 | +2.051 |
23/19 | -1.869 | -2.273 |
19/15 | +1.871 | +2.276 |
19/7 | -2.002 | -2.434 |
7/1 | +2.322 | +2.824 |
18/5 | +2.428 | +2.953 |
13/7 | -2.801 | -3.407 |
23/7 | -3.870 | -4.707 |
15/7 | -3.873 | -4.710 |
25/6 | -3.979 | -4.839 |
22/3 | +4.008 | +4.875 |
17/2 | -4.915 | -5.977 |
22/15 | -5.264 | -6.402 |
23/22 | +5.267 | +6.405 |
17/6 | +5.908 | +7.186 |
22/13 | -6.336 | -7.706 |
22/1 | -6.815 | -8.288 |
25/18 | +6.844 | +8.324 |
7/5 | -6.950 | -8.453 |
23/21 | +6.953 | +8.456 |
22/19 | -7.136 | -8.678 |
17/14 | -7.237 | -8.802 |
21/13 | -8.022 | -9.756 |
21/1 | -8.501 | -10.339 |
21/19 | -8.822 | -10.729 |
19/5 | -8.952 | -10.887 |
22/7 | -9.137 | -11.113 |
5/1 | +9.272 | +11.277 |
23/3 | +9.275 | +11.280 |
18/7 | +9.378 | +11.406 |
13/5 | -9.751 | -11.860 |
25/17 | -9.887 | -12.025 |
13/3 | +10.344 | +12.581 |
23/5 | -10.821 | -13.160 |
3/1 | -10.823 | -13.163 |
19/3 | +11.144 | +13.553 |
19/18 | -11.380 | -13.840 |
18/1 | +11.701 | +14.230 |
18/13 | +12.180 | +14.813 |
7/3 | +13.145 | +15.987 |
23/18 | -13.249 | -16.113 |
6/5 | +13.251 | +16.116 |
17/10 | -14.187 | -17.255 |
25/2 | -14.802 | -18.002 |
22/9 | +14.831 | +18.038 |
22/5 | -16.087 | -19.566 |
25/7 | +16.223 | +19.730 |
18/17 | -16.731 | -20.349 |
25/14 | -17.124 | -20.826 |
21/5 | -17.773 | -21.616 |
25/19 | +18.224 | +22.164 |
11/9 | -18.515 | -22.519 |
25/1 | +18.545 | +22.554 |
25/13 | +19.024 | +23.137 |
17/5 | +19.160 | +23.302 |
25/23 | +20.093 | +24.437 |
5/3 | +20.096 | +24.440 |
23/9 | +20.098 | +24.443 |
7/6 | -20.202 | -24.569 |
13/9 | +21.167 | +25.744 |
9/1 | -21.646 | -26.326 |
19/9 | +21.967 | +26.716 |
19/6 | -22.203 | -27.003 |
6/1 | +22.524 | +27.393 |
13/6 | -23.003 | -27.976 |
9/7 | -23.968 | -29.151 |
23/6 | -24.072 | -29.276 |
5/2 | -24.074 | -29.279 |
25/22 | +25.360 | +30.843 |
17/7 | +26.110 | +31.755 |
14/5 | +26.397 | +32.104 |
25/21 | +27.046 | +32.893 |
17/12 | -27.439 | -33.371 |
19/17 | -28.111 | -34.189 |
17/1 | +28.432 | +34.579 |
17/13 | +28.911 | +35.162 |
11/3 | -29.339 | -35.682 |
25/3 | +29.368 | +35.718 |
23/17 | -29.980 | -36.462 |
17/15 | +29.983 | +36.465 |
9/5 | -30.919 | -37.604 |
7/2 | -31.025 | -37.732 |
21/11 | +31.661 | +38.506 |
19/2 | -33.026 | -40.167 |
2/1 | +33.347 | +40.557 |
13/2 | -33.826 | -41.139 |
23/2 | -34.895 | -42.439 |
15/2 | -34.898 | -42.442 |
22/17 | -35.247 | -42.867 |
19/14 | -35.348 | -42.991 |
14/1 | +35.669 | +43.381 |
14/13 | +36.148 | +43.963 |
21/17 | -36.933 | -44.918 |
23/14 | -37.217 | -45.264 |
15/14 | -37.220 | -45.267 |
25/12 | -37.326 | -45.395 |
17/4 | -38.262 | -46.534 |
15/11 | +38.611 | +46.959 |
23/11 | +38.614 | +46.962 |
17/3 | +39.255 | +47.742 |
13/11 | +39.683 | +48.262 |
11/1 | -40.162 | -48.845 |
25/9 | +40.191 | +48.881 |
10/7 | +40.297 | +49.010 |
19/11 | +40.482 | +49.235 |
21/2 | -41.848 | -50.895 |
19/10 | -42.299 | -51.444 |
11/7 | -42.484 | -51.669 |
10/1 | +42.619 | +51.834 |
13/10 | -43.098 | -52.416 |
23/10 | -44.168 | -53.717 |
3/2 | -44.170 | -53.720 |
14/3 | +46.492 | +56.544 |
12/5 | +46.598 | +56.673 |
20/17 | +47.534 | +57.811 |
25/4 | -48.149 | -58.559 |
11/5 | -49.434 | -60.122 |
17/9 | +50.078 | +60.905 |
21/10 | -51.120 | -62.173 |
18/11 | +51.862 | +63.075 |
10/3 | +53.442 | +64.997 |
12/7 | +53.548 | +65.126 |
9/2 | -54.993 | -66.883 |
19/12 | -55.550 | -67.560 |
12/1 | +55.871 | +67.950 |
13/12 | -56.350 | -68.532 |
14/9 | +57.315 | +69.707 |
23/12 | -57.419 | -69.833 |
5/4 | -57.421 | -69.836 |
25/11 | +58.707 | +71.399 |
24/17 | +60.785 | +73.927 |
11/6 | -62.685 | -76.238 |
10/9 | +64.266 | +78.160 |
7/4 | -64.372 | -78.289 |
19/4 | -66.373 | -80.723 |
4/1 | +66.694 | +81.113 |
13/4 | -67.173 | -81.696 |
23/4 | -68.242 | -82.996 |
15/4 | -68.244 | -82.999 |
17/11 | +68.594 | +83.424 |
25/24 | -70.672 | -85.952 |
17/8 | -71.609 | -87.091 |
11/2 | -73.509 | -89.401 |
20/7 | +73.644 | +89.566 |
21/4 | -75.195 | -91.452 |
20/19 | +75.646 | +92.000 |
14/11 | +75.831 | +92.226 |
20/1 | +75.966 | +92.390 |
20/13 | +76.445 | +92.973 |
23/20 | -77.514 | -94.273 |
4/3 | +77.517 | +94.276 |
24/5 | +79.945 | +97.229 |
25/8 | -81.496 | -99.115 |
11/10 | -82.781 | -100.679 |
21/20 | -84.467 | -102.729 |
20/3 | +86.789 | +105.553 |
24/7 | +86.895 | +105.682 |
9/4 | -88.340 | -107.439 |
24/19 | +88.897 | +108.116 |
24/1 | +89.217 | +108.506 |
24/13 | +89.696 | +109.089 |
24/23 | +90.766 | +110.389 |
8/5 | +90.768 | +110.392 |
12/11 | +96.032 | +116.795 |
20/9 | +97.613 | +118.717 |
8/7 | +97.718 | +118.845 |
19/8 | -99.720 | -121.280 |
8/1 | +100.041 | +121.670 |
13/8 | -100.520 | -122.252 |
23/8 | -101.589 | -123.553 |
15/8 | -101.591 | -123.556 |
17/16 | -104.955 | -127.647 |
11/4 | -106.855 | -129.958 |
21/8 | -108.542 | -132.009 |
8/3 | +110.864 | +134.833 |
25/16 | -114.842 | -139.672 |
20/11 | +116.128 | +141.235 |
9/8 | -121.687 | -147.996 |
16/5 | +124.115 | +150.949 |
24/11 | +129.379 | +157.351 |
16/7 | +131.065 | +159.402 |
19/16 | -133.067 | -161.836 |
16/1 | +133.387 | +162.226 |
16/13 | +133.866 | +162.809 |
23/16 | -134.936 | -164.109 |
16/15 | +134.938 | +164.112 |
11/8 | -140.202 | -170.514 |
21/16 | -141.888 | -172.565 |
16/3 | +144.211 | +175.389 |
16/9 | +155.034 | +188.552 |
16/11 | +173.549 | +211.071 |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |