164edo: Difference between revisions
Expand on its fifth from 41edo and the use of 328edo as an alternative |
m changed EDO intro to ED intro |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
164 = 4 × 41, and 164edo shares its [[perfect fifth|fifth]] with [[41edo]]. In the 5-limit, 164et tempers out the [[würschmidt comma]], 393216/390625, and the [[vulture comma]], {{monzo| 24 -21 4 }}. It supplies the [[optimal patent val]] for the [[würschmidt]] temperament. | 164 = 4 × 41, and 164edo shares its [[perfect fifth|fifth]] with [[41edo]]. In the 5-limit, 164et tempers out the [[würschmidt comma]], 393216/390625, and the [[vulture comma]], {{monzo| 24 -21 4 }}. It supplies the [[optimal patent val]] for the [[würschmidt]] temperament. | ||
In the [[patent val]] {{val| 164 260 381 '''460''' '''567''' 607 }}, it tempers out [[196/195]], [[352/351]], [[385/384]], [[441/440]], [[676/675]], and supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440. | In the [[patent val]] {{val| 164 260 381 '''460''' '''567''' 607 }}, it tempers out [[196/195]], [[352/351]], [[385/384]], [[441/440]], [[676/675]], and supplies the optimal patent val for the 7-limit, 1/41 octave period {{nowrap|41 & 123}} temperament, and the 13-limit [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440. | ||
In the alternative val 164de {{val| 164 260 381 '''461''' '''568''' 607 }}, it tempers out [[243/242]], [[351/350]], [[364/363]], [[640/637]], [[676/675]], [[729/728]], and [[1575/1573]]. | In the alternative val 164de {{val| 164 260 381 '''461''' '''568''' 607 }}, it tempers out [[243/242]], [[351/350]], [[364/363]], [[640/637]], [[676/675]], [[729/728]], and [[1575/1573]]. The 164dg val is a good tuning for 7- to 19-limit [[buzzard]] temperament, although if harmonic 11 is desired it is only easily accessible through the patent mapping. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 13: | Line 13: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 164 = {{factorization|164}}, 164edo has subset edos {{EDOs| 2, 4, 41, 82 }}. [[328edo]], which doubles it, provides good correction for the approximation to harmonics 7 and 11, and is [[consistent]] in the [[13-odd-limit]]. | Since {{nowrap|164 {{=}} {{factorization|164}}}}, 164edo has subset edos {{EDOs| 2, 4, 41, 82 }}. [[328edo]], which doubles it, provides good correction for the approximation to harmonics 7 and 11, and is [[consistent]] in the [[13-odd-limit]]. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 29: | Line 30: | ||
| 393216/390625, {{monzo| 24 -21 4 }} | | 393216/390625, {{monzo| 24 -21 4 }} | ||
| {{mapping| 164 260 381 }} | | {{mapping| 164 260 381 }} | ||
| | | −0.316 | ||
| 0.262 | | 0.262 | ||
| 3.58 | | 3.58 | ||
Line 36: | Line 37: | ||
| 676/675, 256000/255879, 393216/390625 | | 676/675, 256000/255879, 393216/390625 | ||
| {{mapping| 164 260 381 607 }} | | {{mapping| 164 260 381 607 }} | ||
| | | −0.300 | ||
| 0.229 | | 0.229 | ||
| 3.13 | | 3.13 | ||
Line 43: | Line 44: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br />ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 93: | Line 95: | ||
|- | |- | ||
| 4 | | 4 | ||
| 68\164<br>(14\164) | | 68\164<br />(14\164) | ||
| 497.56<br>(102.44) | | 497.56<br />(102.44) | ||
| 4/3<br>(35/33) | | 4/3<br />(35/33) | ||
| [[Undim]] (164deff) / [[unlit]] (164f) | | [[Undim]] (164deff) / [[unlit]] (164f) | ||
|- | |- | ||
| 41 | | 41 | ||
| 53\164<br>(1\164) | | 53\164<br />(1\164) | ||
| 387.80<br>(7.32) | | 387.80<br />(7.32) | ||
| 5/4<br>(32805/32768) | | 5/4<br />(32805/32768) | ||
| [[Countercomp]] | | [[Countercomp]] | ||
|} | |} | ||
<nowiki>* | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
[[Category:Würschmidt]] | [[Category:Würschmidt]] |
Latest revision as of 18:03, 19 February 2025
← 163edo | 164edo | 165edo → |
164 equal divisions of the octave (abbreviated 164edo or 164ed2), also called 164-tone equal temperament (164tet) or 164 equal temperament (164et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 164 equal parts of about 7.32 ¢ each. Each step represents a frequency ratio of 21/164, or the 164th root of 2.
Theory
164 = 4 × 41, and 164edo shares its fifth with 41edo. In the 5-limit, 164et tempers out the würschmidt comma, 393216/390625, and the vulture comma, [24 -21 4⟩. It supplies the optimal patent val for the würschmidt temperament.
In the patent val ⟨164 260 381 460 567 607], it tempers out 196/195, 352/351, 385/384, 441/440, 676/675, and supplies the optimal patent val for the 7-limit, 1/41 octave period 41 & 123 temperament, and the 13-limit momentous temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440.
In the alternative val 164de ⟨164 260 381 461 568 607], it tempers out 243/242, 351/350, 364/363, 640/637, 676/675, 729/728, and 1575/1573. The 164dg val is a good tuning for 7- to 19-limit buzzard temperament, although if harmonic 11 is desired it is only easily accessible through the patent mapping.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.48 | +1.49 | -2.97 | -2.54 | +0.94 | -2.52 | +2.49 | +0.99 | +2.13 | -3.57 |
Relative (%) | +0.0 | +6.6 | +20.4 | -40.6 | -34.7 | +12.8 | -34.4 | +34.0 | +13.6 | +29.1 | -48.8 | |
Steps (reduced) |
164 (0) |
260 (96) |
381 (53) |
460 (132) |
567 (75) |
607 (115) |
670 (14) |
697 (41) |
742 (86) |
797 (141) |
812 (156) |
Subsets and supersets
Since 164 = 22 × 41, 164edo has subset edos 2, 4, 41, 82. 328edo, which doubles it, provides good correction for the approximation to harmonics 7 and 11, and is consistent in the 13-odd-limit.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | 393216/390625, [24 -21 4⟩ | [⟨164 260 381]] | −0.316 | 0.262 | 3.58 |
2.3.5.13 | 676/675, 256000/255879, 393216/390625 | [⟨164 260 381 607]] | −0.300 | 0.229 | 3.13 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 47\164 | 343.90 | 8000/6561 | Geb |
1 | 49\164 | 358.54 | 16/13 | Restles (164) |
1 | 53\164 | 387.80 | 5/4 | Würschmidt |
1 | 53\164 | 475.61 | 320/243 | Vulture |
1 | 69\164 | 504.88 | 104976/78125 | Countermeantone |
2 | 17\164 | 124.39 | 275/256 | Semivulture (164) |
2 | 25\164 | 182.93 | 10/9 | Unidecmic |
4 | 68\164 (14\164) |
497.56 (102.44) |
4/3 (35/33) |
Undim (164deff) / unlit (164f) |
41 | 53\164 (1\164) |
387.80 (7.32) |
5/4 (32805/32768) |
Countercomp |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct