59edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
Fredg999 category edits (talk | contribs)
m Removing from Category:Edonoi using Cat-a-lot
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''59EDT''' is the [[Edt|equal division of the third harmonic]] into 59 parts of 32.2365 [[cent|cents]] each, corresponding to 37.2249 [[edo]]. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by [[335edo|335]], [[1489edo|1489]], [[1824edo|1824]], [[2159edo|2159]], [[2494edo|2494]], [[2829edo|2829]], and [[3164edo|3164]] EDOs.
'''59EDT''' is the [[Edt|equal division of the third harmonic]] into 59 parts of 32.2365 [[cent|cents]] each, corresponding to 37.2249 [[edo]]. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by [[335edo|335]], [[1489edo|1489]], [[1824edo|1824]], [[2159edo|2159]], [[2494edo|2494]], [[2829edo|2829]], and [[3164edo|3164]] EDOs.
== Intervals ==
{{Interval table}}


== Prime harmonics ==
== Prime harmonics ==
{{Harmonics in equal|59|3|1|intervals=prime}}
{{Harmonics in equal
| steps = 59
| num = 3
| denom = 1
| intervals = prime
}}
{{Harmonics in equal
| steps = 59
| num = 3
| denom = 1
| start = 12
| collapsed = 1
| intervals = prime
}}


=Related regular temperaments=
==Related regular temperaments==
==149&186 temperament==
===149&186 temperament===
===5-limit===
====5-limit====
Comma: |118 12 -59>
Comma: |118 12 -59>


Line 16: Line 32:
EDOs: {{EDOs|37, 149, 186, 335, 484, 521}}
EDOs: {{EDOs|37, 149, 186, 335, 484, 521}}


===7-limit 149&186===
====7-limit 149&186====
Commas: 3136/3125, 49433168575/48922361856
Commas: 3136/3125, 49433168575/48922361856


Line 25: Line 41:
EDOs: {{EDOs|37, 149, 186, 335}}
EDOs: {{EDOs|37, 149, 186, 335}}


===7-limit 149d&186===
====7-limit 149d&186====
Commas: 1280000000/1275989841, 8589934592/8544921875
Commas: 1280000000/1275989841, 8589934592/8544921875


Line 34: Line 50:
EDOs: {{EDOs|149d, 186, 335d, 521, 707}}
EDOs: {{EDOs|149d, 186, 335d, 521, 707}}


===7-limit 149&186d===
====7-limit 149&186d====
Commas: 29360128/29296875, 1937102445/1927561216
Commas: 29360128/29296875, 1937102445/1927561216


Line 43: Line 59:
EDOs: {{EDOs|149, 186d, 335d, 484, 633}}
EDOs: {{EDOs|149, 186d, 335d, 484, 633}}


==335&2159 temperament==
===335&2159 temperament===
===5-limit===
====5-limit====
Comma: |413 -347 59>
Comma: |413 -347 59>


Line 52: Line 68:


EDOs: {{EDOs|335, 1489, 1824, 2159, 2494, 2829, 3164}}
EDOs: {{EDOs|335, 1489, 1824, 2159, 2494, 2829, 3164}}
[[Category:Edt]]
[[Category:Edonoi]]

Latest revision as of 19:23, 1 August 2025

← 58edt 59edt 60edt →
Prime factorization 59 (prime)
Step size 32.2365 ¢ 
Octave 37\59edt (1192.75 ¢)
Consistency limit 6
Distinct consistency limit 6

59EDT is the equal division of the third harmonic into 59 parts of 32.2365 cents each, corresponding to 37.2249 edo. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by 335, 1489, 1824, 2159, 2494, 2829, and 3164 EDOs.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 32.2 22
2 64.5 44.1 27/26, 28/27, 29/28
3 96.7 66.1 18/17, 19/18
4 128.9 88.1 14/13
5 161.2 110.2 34/31
6 193.4 132.2 19/17, 29/26
7 225.7 154.2 33/29
8 257.9 176.3 22/19
9 290.1 198.3 13/11
10 322.4 220.3
11 354.6 242.4 27/22
12 386.8 264.4 5/4
13 419.1 286.4 14/11
14 451.3 308.5
15 483.5 330.5
16 515.8 352.5 31/23
17 548 374.6
18 580.3 396.6
19 612.5 418.6 27/19
20 644.7 440.7
21 677 462.7 34/23
22 709.2 484.7
23 741.4 506.8 23/15
24 773.7 528.8 25/16
25 805.9 550.8
26 838.1 572.9
27 870.4 594.9
28 902.6 616.9
29 934.9 639
30 967.1 661
31 999.3 683.1
32 1031.6 705.1
33 1063.8 727.1
34 1096 749.2
35 1128.3 771.2 23/12
36 1160.5 793.2
37 1192.8 815.3
38 1225 837.3
39 1257.2 859.3 29/14, 31/15
40 1289.5 881.4 19/9
41 1321.7 903.4
42 1353.9 925.4
43 1386.2 947.5 29/13
44 1418.4 969.5 34/15
45 1450.6 991.5
46 1482.9 1013.6 33/14
47 1515.1 1035.6 12/5
48 1547.4 1057.6 22/9
49 1579.6 1079.7
50 1611.8 1101.7 33/13
51 1644.1 1123.7 31/12
52 1676.3 1145.8 29/11
53 1708.5 1167.8
54 1740.8 1189.8
55 1773 1211.9
56 1805.2 1233.9 17/6
57 1837.5 1255.9 26/9
58 1869.7 1278
59 1902 1300 3/1

Prime harmonics

Approximation of prime harmonics in 59edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -7.2 +0.0 -14.0 +16.0 +7.2 +8.1 -5.0 -4.1 -12.5 +5.2 -13.5
Relative (%) -22.5 +0.0 -43.3 +49.7 +22.3 +25.2 -15.5 -12.8 -38.9 +16.2 -41.9
Steps
(reduced)
37
(37)
59
(0)
86
(27)
105
(46)
129
(11)
138
(20)
152
(34)
158
(40)
168
(50)
181
(4)
184
(7)
Approximation of prime harmonics in 59edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.5 -14.0 +0.3 +7.5 -7.1 +0.6 +7.4 +6.1 +2.5 -13.4 +11.0
Relative (%) +7.9 -43.4 +0.8 +23.1 -22.1 +1.9 +22.9 +19.1 +7.7 -41.5 +34.3
Steps
(reduced)
194
(17)
199
(22)
202
(25)
207
(30)
213
(36)
219
(42)
221
(44)
226
(49)
229
(52)
230
(53)
235
(58)

Related regular temperaments

149&186 temperament

5-limit

Comma: |118 12 -59>

POTE generator: ~3125/3072 = 32.2390

Map: [<1 0 2|, <0 59 12|]

EDOs: 37, 149, 186, 335, 484, 521

7-limit 149&186

Commas: 3136/3125, 49433168575/48922361856

POTE generator: ~49/48 = 32.2368

Map: [<1 0 2 2|, <0 59 12 30|]

EDOs: 37, 149, 186, 335

7-limit 149d&186

Commas: 1280000000/1275989841, 8589934592/8544921875

POTE generator: ~3125/3072 = 32.2456

Map: [<1 0 2 7|, <0 59 12 -156|]

EDOs: 149d, 186, 335d, 521, 707

7-limit 149&186d

Commas: 29360128/29296875, 1937102445/1927561216

POTE generator: ~3125/3072 = 32.2308

Map: [<1 0 2 -2|, <0 59 12 179|]

EDOs: 149, 186d, 335d, 484, 633

335&2159 temperament

5-limit

Comma: |413 -347 59>

POTE generator: ~|-119 100 -17> = 32.2373

Map: [<1 0 -7|, <0 59 347|]

EDOs: 335, 1489, 1824, 2159, 2494, 2829, 3164