User:MisterShafXen/1edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Created page with "{{Infobox ET}} {{ED intro}} == Notation == A. All A. == Theory == All intervals are either tempered out or mapped to the octave. == Intervals == {{Interval table|1edo}} == Harmonics == {{Harmonics in equal|steps=1|columns=20|intervals=prime}}{{Harmonics in equal|steps=1|start=21|columns=20|intervals=prime}}"
Tags: Visual edit Mobile edit Mobile web edit
 
m Text replacement - "{{Infobox ET}}" to "{{Infobox ET|debug=1}}"
Tags: Mobile edit Mobile web edit
 
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET|debug=1}}


{{ED intro}}  
{{ED intro}}  

Latest revision as of 14:43, 1 August 2025

← 0edo 1edo 2edo →
Prime factorization n/a
Step size 1200 ¢ 
Fifth 1\1 (1200 ¢)
Semitones (A1:m2) 3:-2 (3600 ¢ : -2400 ¢)
Dual sharp fifth 1\1 (1200 ¢)
Dual flat fifth 0\1 (0 ¢)
Dual major 2nd 0\1 (0 ¢)
Consistency limit 3
Distinct consistency limit 1
Special properties

1 equal division of the octave (abbreviated 1edo or 1ed2), also called 1-tone equal temperament (1tet) or 1 equal temperament (1et) when viewed under a regular temperament perspective, is the tuning system that uses equal steps of 2/1 (one octave), or exactly 1200 ¢.

Notation

A. All A.

Theory

All intervals are either tempered out or mapped to the octave.

Intervals

Steps Cents Approximate ratios Ups and downs notation
(Dual flat fifth 0\1)
Ups and downs notation
(Dual sharp fifth 1\1)
0 0 1/1, 4/3, 5/3, 5/4, 7/6, 8/7, 10/7, 11/6, 11/7, 11/8, 11/10, 13/9, 13/12, 14/9, 14/13, 15/13, 15/14, 16/9, 16/13, 16/15, 17/9, 17/12, 17/13, 17/14, 17/15, 17/16, 19/9, 19/12, 19/13, 19/14, 19/15, 19/16, 19/17, 20/9, 20/13, 20/17, 20/19 D, E, F, A, B, C D, E, F, G, B, C
1 1200 2/1, 3/2, 5/2, 6/5, 7/3, 7/4, 7/5, 8/3, 8/5, 9/7, 9/8, 10/3, 11/3, 11/4, 11/5, 12/7, 12/11, 13/6, 13/7, 13/8, 13/10, 13/11, 14/11, 15/7, 15/8, 15/11, 16/7, 16/11, 17/6, 17/7, 17/8, 17/10, 17/11, 18/13, 18/17, 19/6, 19/7, 19/8, 19/10, 19/11, 20/7, 20/11 G, D A, D

Harmonics

Approximation of prime harmonics in 1edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
Error Absolute (¢) +0 +498 -386 +231 -551 +359 -105 -298 +572 +170 +55 -251 -429 -512 +534 +326 +141 +83 -79 -180
Relative (%) +0.0 +41.5 -32.2 +19.3 -45.9 +30.0 -8.7 -24.8 +47.6 +14.2 +4.6 -20.9 -35.8 -42.6 +44.5 +27.2 +11.7 +6.9 -6.6 -15.0
Step 1 2 2 3 3 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6
Approximation of prime harmonics in 1edo
Harmonic 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
Error Absolute (¢) -228 -365 -450 -571 +480 +410 +376 +310 +278 +216 +14 -40 -118 -143 -263 -286 -354 -418 -460 -522
Relative (%) -19.0 -30.4 -37.5 -47.6 +40.0 +34.2 +31.3 +25.9 +23.2 +18.0 +1.1 -3.3 -9.8 -11.9 -21.9 -23.8 -29.5 -34.9 -38.4 -43.5
Step 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7