User:MisterShafXen/1edo: Difference between revisions
Jump to navigation
Jump to search
Prime factorization
n/a
Step size
1200 ¢
Fifth
1\1 (1200 ¢)
Semitones (A1:m2)
3:-2 (3600 ¢ : -2400 ¢)
Dual sharp fifth
1\1 (1200 ¢)
Dual flat fifth
0\1 (0 ¢)
Dual major 2nd
0\1 (0 ¢)
Consistency limit
3
Distinct consistency limit
1
Special properties
Created page with "{{Infobox ET}} {{ED intro}} == Notation == A. All A. == Theory == All intervals are either tempered out or mapped to the octave. == Intervals == {{Interval table|1edo}} == Harmonics == {{Harmonics in equal|steps=1|columns=20|intervals=prime}}{{Harmonics in equal|steps=1|start=21|columns=20|intervals=prime}}" Tags: Visual edit Mobile edit Mobile web edit |
m Text replacement - "{{Infobox ET}}" to "{{Infobox ET|debug=1}}" Tags: Mobile edit Mobile web edit |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET|debug=1}} | ||
{{ED intro}} | {{ED intro}} |
Latest revision as of 14:43, 1 August 2025
← 0edo | 1edo | 2edo → |
1 equal division of the octave (abbreviated 1edo or 1ed2), also called 1-tone equal temperament (1tet) or 1 equal temperament (1et) when viewed under a regular temperament perspective, is the tuning system that uses equal steps of 2/1 (one octave), or exactly 1200 ¢.
Notation
A. All A.
Theory
All intervals are either tempered out or mapped to the octave.
Intervals
Steps | Cents | Approximate ratios | Ups and downs notation (Dual flat fifth 0\1) |
Ups and downs notation (Dual sharp fifth 1\1) |
---|---|---|---|---|
0 | 0 | 1/1, 4/3, 5/3, 5/4, 7/6, 8/7, 10/7, 11/6, 11/7, 11/8, 11/10, 13/9, 13/12, 14/9, 14/13, 15/13, 15/14, 16/9, 16/13, 16/15, 17/9, 17/12, 17/13, 17/14, 17/15, 17/16, 19/9, 19/12, 19/13, 19/14, 19/15, 19/16, 19/17, 20/9, 20/13, 20/17, 20/19 | D, E, F, A, B, C | D, E, F, G, B, C |
1 | 1200 | 2/1, 3/2, 5/2, 6/5, 7/3, 7/4, 7/5, 8/3, 8/5, 9/7, 9/8, 10/3, 11/3, 11/4, 11/5, 12/7, 12/11, 13/6, 13/7, 13/8, 13/10, 13/11, 14/11, 15/7, 15/8, 15/11, 16/7, 16/11, 17/6, 17/7, 17/8, 17/10, 17/11, 18/13, 18/17, 19/6, 19/7, 19/8, 19/10, 19/11, 20/7, 20/11 | G, D | A, D |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | +498 | -386 | +231 | -551 | +359 | -105 | -298 | +572 | +170 | +55 | -251 | -429 | -512 | +534 | +326 | +141 | +83 | -79 | -180 |
Relative (%) | +0.0 | +41.5 | -32.2 | +19.3 | -45.9 | +30.0 | -8.7 | -24.8 | +47.6 | +14.2 | +4.6 | -20.9 | -35.8 | -42.6 | +44.5 | +27.2 | +11.7 | +6.9 | -6.6 | -15.0 | |
Step | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 |
Harmonic | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -228 | -365 | -450 | -571 | +480 | +410 | +376 | +310 | +278 | +216 | +14 | -40 | -118 | -143 | -263 | -286 | -354 | -418 | -460 | -522 |
Relative (%) | -19.0 | -30.4 | -37.5 | -47.6 | +40.0 | +34.2 | +31.3 | +25.9 | +23.2 | +18.0 | +1.1 | -3.3 | -9.8 | -11.9 | -21.9 | -23.8 | -29.5 | -34.9 | -38.4 | -43.5 | |
Step | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |