253edo: Difference between revisions
m Cleanup |
m + category |
||
(10 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime | 253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the [[prime harmonic]]s from 5 to 17 are all slightly flat. As an equal temperament, it [[tempering out|tempers out]] [[32805/32768]] in the [[5-limit]]; [[2401/2400]] in the [[7-limit]]; [[385/384]], [[1375/1372]] and [[4000/3993]] in the [[11-limit]]; [[325/324]], [[1575/1573]] and [[2200/2197]] in the [[13-limit]]; [[375/374]] and [[595/594]] in the [[17-limit]]. It provides the [[optimal patent val]] for the [[tertiaschis]] temperament, and a good tuning for the [[sesquiquartififths]] temperament in the higher limits. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 9: | Line 9: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
253 | Since 253 factors into 11 × 23, and has subset edos [[11edo]] and [[23edo]]. [[1012edo]] divides 253edo's step size into 4 equal parts and provides a good approximation of the 13-limit. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 24: | Line 25: | ||
| 2.3 | | 2.3 | ||
| {{monzo| 401 -253 }} | | {{monzo| 401 -253 }} | ||
| | | {{mapping| 253 401 }} | ||
| | | −0.007 | ||
| 0.007 | | 0.007 | ||
| 0.14 | | 0.14 | ||
Line 31: | Line 32: | ||
| 2.3.5 | | 2.3.5 | ||
| 32805/32768, {{monzo| -4 -37 27 }} | | 32805/32768, {{monzo| -4 -37 27 }} | ||
| | | {{mapping| 253 401 587 }} | ||
| +0.300 | | +0.300 | ||
| 0.435 | | 0.435 | ||
Line 38: | Line 39: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 32805/32768, 390625/387072 | | 2401/2400, 32805/32768, 390625/387072 | ||
| | | {{mapping| 253 401 587 710 }} | ||
| +0.335 | | +0.335 | ||
| 0.381 | | 0.381 | ||
Line 45: | Line 46: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 385/384, 1375/1372, 4000/3993, 19712/19683 | | 385/384, 1375/1372, 4000/3993, 19712/19683 | ||
| | | {{mapping| 253 401 587 710 875 }} | ||
| +0.333 | | +0.333 | ||
| 0.341 | | 0.341 | ||
Line 52: | Line 53: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197 | | 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197 | ||
| | | {{mapping| 253 401 587 710 875 936 }} | ||
| +0.323 | | +0.323 | ||
| 0.312 | | 0.312 | ||
Line 59: | Line 60: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197 | | 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197 | ||
| | | {{mapping| 253 401 587 710 875 936 1034 }} | ||
| +0.298 | | +0.298 | ||
| 0.295 | | 0.295 | ||
Line 67: | Line 68: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br> | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 90: | Line 92: | ||
| 498.02 | | 498.02 | ||
| 4/3 | | 4/3 | ||
| [[Helmholtz]] | | [[Helmholtz (temperament)|Helmholtz]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 98: | Line 100: | ||
| [[Cotritone]] | | [[Cotritone]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | == Scales == | ||
* 63 32 63 63 32: [[3L 2s| | * 63 32 63 63 32: One of many [[3L 2s|pentic]] scales available | ||
* 43 43 19 43 43 43 19: [[Helmholtz]][7] | * 43 43 19 43 43 43 19: [[Helmholtz (temperament)|Helmholtz]][7] | ||
* 41 41 24 41 41 41 24: [[Meantone]][7] | * 41 41 24 41 41 41 24: [[Meantone]][7] | ||
* 35 35 35 35 35 35 35 8: [[Porcupine]][8] | * 35 35 35 35 35 35 35 8: [[Porcupine]][8] | ||
Line 109: | Line 112: | ||
* 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh scale]] | * 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh scale]] | ||
[[Category:3-limit record edos|###]] <!-- 3-digit number --> | |||
[[Category:Tertiaschis]] | [[Category:Tertiaschis]] |
Latest revision as of 12:47, 12 July 2025
← 252edo | 253edo | 254edo → |
(semiconvergent)
253 equal divisions of the octave (abbreviated 253edo or 253ed2), also called 253-tone equal temperament (253tet) or 253 equal temperament (253et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 253 equal parts of about 4.74 ¢ each. Each step represents a frequency ratio of 21/253, or the 253rd root of 2.
Theory
253edo is consistent to the 17-odd-limit, approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. As an equal temperament, it tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides the optimal patent val for the tertiaschis temperament, and a good tuning for the sesquiquartififths temperament in the higher limits.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.02 | -2.12 | -1.24 | -1.12 | -1.00 | -0.61 | +1.30 | -2.19 | -0.33 | -1.95 |
Relative (%) | +0.0 | +0.4 | -44.8 | -26.1 | -23.6 | -21.1 | -12.8 | +27.4 | -46.1 | -6.9 | -41.2 | |
Steps (reduced) |
253 (0) |
401 (148) |
587 (81) |
710 (204) |
875 (116) |
936 (177) |
1034 (22) |
1075 (63) |
1144 (132) |
1229 (217) |
1253 (241) |
Subsets and supersets
Since 253 factors into 11 × 23, and has subset edos 11edo and 23edo. 1012edo divides 253edo's step size into 4 equal parts and provides a good approximation of the 13-limit.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [401 -253⟩ | [⟨253 401]] | −0.007 | 0.007 | 0.14 |
2.3.5 | 32805/32768, [-4 -37 27⟩ | [⟨253 401 587]] | +0.300 | 0.435 | 9.16 |
2.3.5.7 | 2401/2400, 32805/32768, 390625/387072 | [⟨253 401 587 710]] | +0.335 | 0.381 | 8.03 |
2.3.5.7.11 | 385/384, 1375/1372, 4000/3993, 19712/19683 | [⟨253 401 587 710 875]] | +0.333 | 0.341 | 7.19 |
2.3.5.7.11.13 | 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197 | [⟨253 401 587 710 875 936]] | +0.323 | 0.312 | 6.58 |
2.3.5.7.11.13.17 | 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197 | [⟨253 401 587 710 875 936 1034]] | +0.298 | 0.295 | 6.22 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 35\253 | 166.01 | 11/10 | Tertiaschis |
1 | 37\253 | 175.49 | 448/405 | Sesquiquartififths |
1 | 105\253 | 498.02 | 4/3 | Helmholtz |
1 | 123\253 | 583.40 | 7/5 | Cotritone |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Scales
- 63 32 63 63 32: One of many pentic scales available
- 43 43 19 43 43 43 19: Helmholtz[7]
- 41 41 24 41 41 41 24: Meantone[7]
- 35 35 35 35 35 35 35 8: Porcupine[8]
- 33 33 33 11 33 33 33 33 11: "The Hendecapliqued superdiatonic of the Icositriphony"
- 31 31 31 18 31 31 31 31 18: Mavila[9]
- 26 26 15 26 26 26 15 26 26 26 15: Sensi[11]
- 20 20 20 11 20 20 20 20 11 20 20 20 20 11: Ketradektriatoh scale