1106edo: Difference between revisions
m →Regular temperament properties: crazy update |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
1106edo is a [[ | 1106edo is a [[zeta peak edo]]. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] being {{EDOs| 171, 270, 342, 441, and 612 }}. It is even stronger in the 11-limit; the only ones beating it out now being {{EDOs| 270, 342, and 612 }}. It is less strong in the 13- and 17-limit, but even so is [[consistency|distinctly consistent]] through the [[17-odd-limit]]. | ||
It notably supports [[supermajor]], [[brahmagupta]], and [[orga]] in the 7-limit, and | The equal temperament [[tempering out|tempers out]] {{monzo| -53 10 16 }} (kwazy comma) and {{monzo| -13 -46 37 }} (supermajor comma) in the 5-limit; [[4375/4374]] and 52734375/52706752 in the 7-limit; [[3025/3024]] and [[9801/9800]] in the 11-limit; [[4096/4095]], 78125/78078, and 105644/105625 in the 13-limit; [[2500/2499]], [[4914/4913]], and 8624/8619 in the 17-limit. It notably supports [[supermajor]], [[brahmagupta]], and [[orga]] in the 7-limit, and [[semisupermajor]] in the 11-limit. In the higher limits, it supports the 79th-octave temperament [[gold]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 11: | Line 11: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 1106 factors into | Since 1106 factors into {{factorization|1106}}, it has subset edos {{EDOs| 2, 7, 14, 79, 158, and 553 }}. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 25: | Line 26: | ||
|- | |- | ||
| 2.3 | | 2.3 | ||
| {{ | | {{Monzo| 1753 -1106 }} | ||
| {{ | | {{Mapping| 1106 1753 }} | ||
| | | −0.010 | ||
| 0.010 | | 0.010 | ||
| 0.99 | | 0.99 | ||
|- | |- | ||
| 2.3.5 | | 2.3.5 | ||
| {{ | | {{Monzo| -53 10 16 }}, {{monzo| -13 -46 37 }} | ||
| {{ | | {{Mapping| 1106 1753 2568 }} | ||
| +0.001 | | +0.001 | ||
| 0.019 | | 0.019 | ||
Line 40: | Line 41: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 4375/4374, 52734375/52706752, {{monzo| 46 -14 -3 -6 }} | | 4375/4374, 52734375/52706752, {{monzo| 46 -14 -3 -6 }} | ||
| {{ | | {{Mapping| 1106 1753 2568 3105 }} | ||
| | | −0.006 | ||
| 0.020 | | 0.020 | ||
| 1.83 | | 1.83 | ||
Line 47: | Line 48: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041 | | 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041 | ||
| {{ | | {{Mapping| 1106 1753 2568 3105 3826 }} | ||
| +0.004 | | +0.004 | ||
| 0.026 | | 0.026 | ||
Line 54: | Line 55: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 3025/3024, 4096/4095, 4375/4374, 78125/78078, 105644/105625 | | 3025/3024, 4096/4095, 4375/4374, 78125/78078, 105644/105625 | ||
| {{ | | {{Mapping| 1106 1753 2568 3105 3826 4093 }} | ||
| | | −0.012 | ||
| 0.043 | | 0.043 | ||
| 3.94 | | 3.94 | ||
Line 61: | Line 62: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 2500/2499, 3025/3024, 4096/4095, 4375/4374, 4914/4913, 8624/8619 | | 2500/2499, 3025/3024, 4096/4095, 4375/4374, 4914/4913, 8624/8619 | ||
| {{ | | {{Mapping| 1106 1753 2568 3105 3826 4093 4521 }} | ||
| | | −0.021 | ||
| 0.045 | | 0.045 | ||
| 4.11 | | 4.11 | ||
Line 69: | Line 70: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 86: | Line 89: | ||
| 9/7 | | 9/7 | ||
| [[Supermajor]] | | [[Supermajor]] | ||
|- | |||
| 2 | |||
| 150\1106 | |||
| 162.749 | |||
| 1125/1024 | |||
| [[Crazy]] | |||
|- | |- | ||
| 2 | | 2 | ||
Line 105: | Line 114: | ||
| [[Gold]] | | [[Gold]] | ||
|} | |} | ||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct |
Latest revision as of 11:31, 6 March 2025
← 1105edo | 1106edo | 1107edo → |
1106 equal divisions of the octave (abbreviated 1106edo or 1106ed2), also called 1106-tone equal temperament (1106tet) or 1106 equal temperament (1106et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1106 equal parts of about 1.08 ¢ each. Each step represents a frequency ratio of 21/1106, or the 1106th root of 2.
Theory
1106edo is a zeta peak edo. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit relative error being 171, 270, 342, 441, and 612. It is even stronger in the 11-limit; the only ones beating it out now being 270, 342, and 612. It is less strong in the 13- and 17-limit, but even so is distinctly consistent through the 17-odd-limit.
The equal temperament tempers out [-53 10 16⟩ (kwazy comma) and [-13 -46 37⟩ (supermajor comma) in the 5-limit; 4375/4374 and 52734375/52706752 in the 7-limit; 3025/3024 and 9801/9800 in the 11-limit; 4096/4095, 78125/78078, and 105644/105625 in the 13-limit; 2500/2499, 4914/4913, and 8624/8619 in the 17-limit. It notably supports supermajor, brahmagupta, and orga in the 7-limit, and semisupermajor in the 11-limit. In the higher limits, it supports the 79th-octave temperament gold.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.034 | -0.057 | +0.071 | -0.143 | +0.340 | +0.289 | -0.225 | -0.065 | +0.079 | -0.370 | +0.374 |
Relative (%) | +0.0 | +3.1 | -5.2 | +6.5 | -13.1 | +31.4 | +26.6 | -20.8 | -6.0 | +7.3 | -34.1 | +34.5 | |
Steps (reduced) |
1106 (0) |
1753 (647) |
2568 (356) |
3105 (893) |
3826 (508) |
4093 (775) |
4521 (97) |
4698 (274) |
5003 (579) |
5373 (949) |
5479 (1055) |
5762 (232) |
Subsets and supersets
Since 1106 factors into 2 × 7 × 79, it has subset edos 2, 7, 14, 79, 158, and 553.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [1753 -1106⟩ | [⟨1106 1753]] | −0.010 | 0.010 | 0.99 |
2.3.5 | [-53 10 16⟩, [-13 -46 37⟩ | [⟨1106 1753 2568]] | +0.001 | 0.019 | 1.73 |
2.3.5.7 | 4375/4374, 52734375/52706752, [46 -14 -3 -6⟩ | [⟨1106 1753 2568 3105]] | −0.006 | 0.020 | 1.83 |
2.3.5.7.11 | 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041 | [⟨1106 1753 2568 3105 3826]] | +0.004 | 0.026 | 2.38 |
2.3.5.7.11.13 | 3025/3024, 4096/4095, 4375/4374, 78125/78078, 105644/105625 | [⟨1106 1753 2568 3105 3826 4093]] | −0.012 | 0.043 | 3.94 |
2.3.5.7.11.13.17 | 2500/2499, 3025/3024, 4096/4095, 4375/4374, 4914/4913, 8624/8619 | [⟨1106 1753 2568 3105 3826 4093 4521]] | −0.021 | 0.045 | 4.11 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 213\1106 | 231.103 | 8/7 | Orga (11-limit) |
1 | 401\1106 | 435.081 | 9/7 | Supermajor |
2 | 150\1106 | 162.749 | 1125/1024 | Crazy |
2 | 401\1106 (152\1106) |
435.081 (164.919) |
9/7 (11/10) |
Semisupermajor |
7 | 479\1106 (5\1106) |
519.711 (5.424) |
27/20 (5120/5103) |
Brahmagupta (7-limit) |
79 | 459\1106 (11\1106) |
498.011 (11.935) |
4/3 (?) |
Gold |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct