718edo: Difference between revisions
Cleanup; clarify the title row of the rank-2 temp table |
m changed EDO intro to ED intro |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
718edo is [[consistency|distinctly consistent]] in the [[23-odd-limit]], and does well enough in the 31-limit. It is closely related to [[359edo]], but the mapping differs for [[5/1|5]], [[13/1|13]], [[17/1|17]] and [[31/1|31]]. | 718edo is [[consistency|distinctly consistent]] in the [[23-odd-limit]], and does well enough in the 31-limit. It is closely related to [[359edo]], but the mapping differs for [[5/1|5]], [[13/1|13]], [[17/1|17]] and [[31/1|31]]. | ||
As does 359et, 718et [[Tempering out|tempers out]] the 359-comma in the 3-limit, rendering a very accurate | As does 359et, 718et [[Tempering out|tempers out]] the 359-comma in the 3-limit, rendering a very accurate [[harmonic]] [[3/1|3]]. In the 5-limit it [[tempering out|tempers out]] the gammic comma, {{monzo| -29 -11 20 }}, and the [[monzisma]], {{monzo| 54 -37 2 }}. In the 7-limit it tempers out [[4375/4374]]; in the 11-limit [[3025/3024]], [[9801/9800]] and [[131072/130977]]; in the 13-limit [[1716/1715]], [[2080/2079]], [[4096/4095]], [[4225/4224]], [[6656/6655]] and [[10648/10647]]; in the 17-limit [[1275/1274]], [[2025/2023]]; in the 19-limit [[2432/2431]], 3250/3249, 4200/4199 and 5985/5984; and in the 23-limit 2024/2023, 2025/2024, 2185/2184, 3060/3059. It [[support]]s [[gammic]], [[monzismic]] and [[abigail]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 11: | Line 11: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 718 factors into | Since 718 factors into {{factorization|718}}, 718edo contains [[2edo]] and [[359edo]] as subsets. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 34: | Line 35: | ||
| 4375/4374, 40500000/40353607, {{monzo| 31 -6 -2 -6 }} | | 4375/4374, 40500000/40353607, {{monzo| 31 -6 -2 -6 }} | ||
| {{mapping| 718 1138 1667 2016 }} | | {{mapping| 718 1138 1667 2016 }} | ||
| | | −0.0207 | ||
| 0.1063 | | 0.1063 | ||
| 6.36 | | 6.36 | ||
Line 41: | Line 42: | ||
| 3025/3024, 4375/4374, 131072/130977, 40500000/40353607 | | 3025/3024, 4375/4374, 131072/130977, 40500000/40353607 | ||
| {{mapping| 718 1138 1667 2016 2484 }} | | {{mapping| 718 1138 1667 2016 2484 }} | ||
| | | −0.0290 | ||
| 0.0965 | | 0.0965 | ||
| 5.77 | | 5.77 | ||
Line 48: | Line 49: | ||
| 1716/1715, 2080/2079, 3025/3024, 4096/4095, 7031250/7014007 | | 1716/1715, 2080/2079, 3025/3024, 4096/4095, 7031250/7014007 | ||
| {{mapping| 718 1138 1667 2016 2484 2657 }} | | {{mapping| 718 1138 1667 2016 2484 2657 }} | ||
| | | −0.0305 | ||
| 0.0881 | | 0.0881 | ||
| 5.27 | | 5.27 | ||
Line 55: | Line 56: | ||
| 1275/1274, 1716/1715, 2025/2023, 2080/2079, 3025/3024, 4096/4095 | | 1275/1274, 1716/1715, 2025/2023, 2080/2079, 3025/3024, 4096/4095 | ||
| {{mapping| 718 1138 1667 2016 2484 2657 2935 }} | | {{mapping| 718 1138 1667 2016 2484 2657 2935 }} | ||
| | | −0.0379 | ||
| 0.0836 | | 0.0836 | ||
| 5.00 | | 5.00 | ||
Line 62: | Line 63: | ||
| 1275/1274, 1716/1715, 2025/2023, 2080/2079, 2432/2431, 3025/3024, 3250/3249 | | 1275/1274, 1716/1715, 2025/2023, 2080/2079, 2432/2431, 3025/3024, 3250/3249 | ||
| {{mapping| 718 1138 1667 2016 2484 2657 2935 3050 }} | | {{mapping| 718 1138 1667 2016 2484 2657 2935 3050 }} | ||
| | | −0.0326 | ||
| 0.0795 | | 0.0795 | ||
| 4.76 | | 4.76 | ||
Line 69: | Line 70: | ||
| 1275/1274, 1716/1715, 2024/2023, 2025/2023, 2080/2079, 2185/2184, 2432/2431, 3025/3024 | | 1275/1274, 1716/1715, 2024/2023, 2025/2023, 2080/2079, 2185/2184, 2432/2431, 3025/3024 | ||
| {{mapping| 718 1138 1667 2016 2484 2657 2935 3050 3248 }} | | {{mapping| 718 1138 1667 2016 2484 2657 2935 3050 3248 }} | ||
| | | −0.0323 | ||
| 0.0749 | | 0.0749 | ||
| 4.48 | | 4.48 | ||
Line 77: | Line 78: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br />ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 102: | Line 104: | ||
| [[Abigail]] | | [[Abigail]] | ||
|} | |} | ||
<nowiki>* | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct |
Latest revision as of 06:32, 21 February 2025
← 717edo | 718edo | 719edo → |
718 equal divisions of the octave (abbreviated 718edo or 718ed2), also called 718-tone equal temperament (718tet) or 718 equal temperament (718et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 718 equal parts of about 1.67 ¢ each. Each step represents a frequency ratio of 21/718, or the 718th root of 2.
Theory
718edo is distinctly consistent in the 23-odd-limit, and does well enough in the 31-limit. It is closely related to 359edo, but the mapping differs for 5, 13, 17 and 31.
As does 359et, 718et tempers out the 359-comma in the 3-limit, rendering a very accurate harmonic 3. In the 5-limit it tempers out the gammic comma, [-29 -11 20⟩, and the monzisma, [54 -37 2⟩. In the 7-limit it tempers out 4375/4374; in the 11-limit 3025/3024, 9801/9800 and 131072/130977; in the 13-limit 1716/1715, 2080/2079, 4096/4095, 4225/4224, 6656/6655 and 10648/10647; in the 17-limit 1275/1274, 2025/2023; in the 19-limit 2432/2431, 3250/3249, 4200/4199 and 5985/5984; and in the 23-limit 2024/2023, 2025/2024, 2185/2184, 3060/3059. It supports gammic, monzismic and abigail.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.005 | -0.241 | +0.533 | +0.214 | +0.141 | +0.337 | -0.020 | +0.138 | -0.051 | -0.189 |
Relative (%) | +0.0 | -0.3 | -14.4 | +31.9 | +12.8 | +8.4 | +20.2 | -1.2 | +8.3 | -3.0 | -11.3 | |
Steps (reduced) |
718 (0) |
1138 (420) |
1667 (231) |
2016 (580) |
2484 (330) |
2657 (503) |
2935 (63) |
3050 (178) |
3248 (376) |
3488 (616) |
3557 (685) |
Subsets and supersets
Since 718 factors into 2 × 359, 718edo contains 2edo and 359edo as subsets.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [-29 -11 20⟩, [54 -37 2⟩ | [⟨718 1138 1667]] | +0.0357 | 0.0482 | 2.89 |
2.3.5.7 | 4375/4374, 40500000/40353607, [31 -6 -2 -6⟩ | [⟨718 1138 1667 2016]] | −0.0207 | 0.1063 | 6.36 |
2.3.5.7.11 | 3025/3024, 4375/4374, 131072/130977, 40500000/40353607 | [⟨718 1138 1667 2016 2484]] | −0.0290 | 0.0965 | 5.77 |
2.3.5.7.11.13 | 1716/1715, 2080/2079, 3025/3024, 4096/4095, 7031250/7014007 | [⟨718 1138 1667 2016 2484 2657]] | −0.0305 | 0.0881 | 5.27 |
2.3.5.7.11.13.17 | 1275/1274, 1716/1715, 2025/2023, 2080/2079, 3025/3024, 4096/4095 | [⟨718 1138 1667 2016 2484 2657 2935]] | −0.0379 | 0.0836 | 5.00 |
2.3.5.7.11.13.17.19 | 1275/1274, 1716/1715, 2025/2023, 2080/2079, 2432/2431, 3025/3024, 3250/3249 | [⟨718 1138 1667 2016 2484 2657 2935 3050]] | −0.0326 | 0.0795 | 4.76 |
2.3.5.7.11.13.17.19.23 | 1275/1274, 1716/1715, 2024/2023, 2025/2023, 2080/2079, 2185/2184, 2432/2431, 3025/3024 | [⟨718 1138 1667 2016 2484 2657 2935 3050 3248]] | −0.0323 | 0.0749 | 4.48 |
- 718et has a lower absolute error in the 23-limit than any previous equal temperaments, past 581 and followed by 742i.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 21\718 | 35.10 | 234375/229376 | Gammic |
1 | 249\718 | 249.03 | [-27 11 3 1⟩ | Monzismic |
2 | 125\718 | 208.91 | 44/39 | Abigail |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct