460edo: Difference between revisions
Wikispaces>FREEZE No edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(21 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
460edo is a very strong 19-limit system and is [[distinctly consistent]] to the [[21-odd-limit]], with [[harmonic]]s of 3 to 19 all tuned flat. | |||
It [[tempering out|tempers out]] the [[schisma]], 32805/32768, in the 5-limit and [[4375/4374]] and [[65536/65625]] in the 7-limit, so that it [[support]]s [[pontiac]], the {{nowrap|171 & 289}} temperament. In the 11-limit it tempers of [[3025/3024]] and [[9801/9800]], and 43923/43904; in the 13-limit [[1001/1000]], [[4225/4224]] and [[10648/10647]], so that it supports [[deca]], the {{nowrap|190 & 270}} temperament; in the 17-limit [[833/832]], [[1089/1088]], [[1225/1224]], [[1701/1700]], [[2058/2057]], [[2431/2430]], [[2601/2600]] and [[4914/4913]]; and in the 19-limit 1331/1330, [[1445/1444]], [[1521/1520]], 1540/1539, [[1729/1728]], 2376/2375, 2926/2925, 3136/3135, 3250/3249 and 4200/4199. It serves as the [[optimal patent val]] for various temperaments such as the rank-5 temperament tempering out 833/832 and 1001/1000. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|460}} | |||
=== Subsets and supersets === | |||
Since 460 factors into {{factorization|460}}, 460edo has subset edos {{EDOs| 2, 4, 5, 10, 20, 23, 46, 92, 115, and 230 }}. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -729 460 }} | |||
| {{mapping| 460 729 }} | |||
| +0.0681 | |||
| 0.0681 | |||
| 2.61 | |||
|- | |||
| 2.3.5 | |||
| 32805/32768, {{monzo| 6 68 -49 }} | |||
| {{mapping| 460 729 1068 }} | |||
| +0.0780 | |||
| 0.0573 | |||
| 2.20 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, 32805/32768, {{monzo| -4 -2 -9 10 }} | |||
| {{mapping| 460 729 1068 1291 }} | |||
| +0.1475 | |||
| 0.1303 | |||
| 4.99 | |||
|- | |||
| 2.3.5.7.11 | |||
| 3025/3024, 4375/4374, 32805/32768, 184877/184320 | |||
| {{mapping| 460 729 1068 1291 1591 }} | |||
| +0.1691 | |||
| 0.1243 | |||
| 4.76 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 1001/1000, 3025/3024, 4225/4224, 4375/4374, 26411/26364 | |||
| {{mapping| 460 729 1068 1291 1591 1702 }} | |||
| +0.1647 | |||
| 0.1139 | |||
| 4.36 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 833/832, 1001/1000, 1089/1088, 1225/1224, 1701/1700, 4225/4224 | |||
| {{mapping| 460 729 1068 1291 1591 1702 1880 }} | |||
| +0.1624 | |||
| 0.1056 | |||
| 4.05 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 833/832, 1001/1000, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1617/1615 | |||
| {{mapping| 460 729 1068 1291 1591 1702 1880 1954 }} | |||
| +0.1457 | |||
| 0.1082 | |||
| 4.15 | |||
|} | |||
* 460et has lower absolute errors in the 17- and 19-limit than any previous equal temperaments. It beats [[422edo|422]] in either subgroup, and is bettered by [[494edo|494]] in the 17-limit, and [[525edo|525]] in the 19-limit. | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 9\460 | |||
| 23.48 | |||
| 531441/524288 | |||
| [[Commatose]] | |||
|- | |||
| 1 | |||
| 121\460 | |||
| 315.65 | |||
| 6/5 | |||
| [[Egads]] | |||
|- | |||
| 1 | |||
| 191\460 | |||
| 498.26 | |||
| 4/3 | |||
| [[Pontiac]] | |||
|- | |||
| 10 | |||
| 121\460<br />(17\460) | |||
| 315.65<br />(44.35) | |||
| 6/5<br />(40/39) | |||
| [[Deca]] | |||
|- | |||
| 20 | |||
| 66\460<br />(20\460) | |||
| 172.173<br />(52.173) | |||
| 169/153<br />(?) | |||
| [[Calcium]] | |||
|- | |||
| 20 | |||
| 217\460<br />(10\460) | |||
| 566.086<br />(26.086) | |||
| 238/165<br />(?) | |||
| [[Soviet ferris wheel]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct |
Latest revision as of 14:59, 20 February 2025
← 459edo | 460edo | 461edo → |
460 equal divisions of the octave (abbreviated 460edo or 460ed2), also called 460-tone equal temperament (460tet) or 460 equal temperament (460et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 460 equal parts of about 2.61 ¢ each. Each step represents a frequency ratio of 21/460, or the 460th root of 2.
Theory
460edo is a very strong 19-limit system and is distinctly consistent to the 21-odd-limit, with harmonics of 3 to 19 all tuned flat.
It tempers out the schisma, 32805/32768, in the 5-limit and 4375/4374 and 65536/65625 in the 7-limit, so that it supports pontiac, the 171 & 289 temperament. In the 11-limit it tempers of 3025/3024 and 9801/9800, and 43923/43904; in the 13-limit 1001/1000, 4225/4224 and 10648/10647, so that it supports deca, the 190 & 270 temperament; in the 17-limit 833/832, 1089/1088, 1225/1224, 1701/1700, 2058/2057, 2431/2430, 2601/2600 and 4914/4913; and in the 19-limit 1331/1330, 1445/1444, 1521/1520, 1540/1539, 1729/1728, 2376/2375, 2926/2925, 3136/3135, 3250/3249 and 4200/4199. It serves as the optimal patent val for various temperaments such as the rank-5 temperament tempering out 833/832 and 1001/1000.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.22 | -0.23 | -1.00 | -0.88 | -0.53 | -0.61 | -0.12 | +0.42 | +0.86 | +0.18 |
Relative (%) | +0.0 | -8.3 | -8.7 | -38.3 | -33.9 | -20.2 | -23.3 | -4.7 | +16.2 | +32.9 | +7.0 | |
Steps (reduced) |
460 (0) |
729 (269) |
1068 (148) |
1291 (371) |
1591 (211) |
1702 (322) |
1880 (40) |
1954 (114) |
2081 (241) |
2235 (395) |
2279 (439) |
Subsets and supersets
Since 460 factors into 22 × 5 × 23, 460edo has subset edos 2, 4, 5, 10, 20, 23, 46, 92, 115, and 230.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-729 460⟩ | [⟨460 729]] | +0.0681 | 0.0681 | 2.61 |
2.3.5 | 32805/32768, [6 68 -49⟩ | [⟨460 729 1068]] | +0.0780 | 0.0573 | 2.20 |
2.3.5.7 | 4375/4374, 32805/32768, [-4 -2 -9 10⟩ | [⟨460 729 1068 1291]] | +0.1475 | 0.1303 | 4.99 |
2.3.5.7.11 | 3025/3024, 4375/4374, 32805/32768, 184877/184320 | [⟨460 729 1068 1291 1591]] | +0.1691 | 0.1243 | 4.76 |
2.3.5.7.11.13 | 1001/1000, 3025/3024, 4225/4224, 4375/4374, 26411/26364 | [⟨460 729 1068 1291 1591 1702]] | +0.1647 | 0.1139 | 4.36 |
2.3.5.7.11.13.17 | 833/832, 1001/1000, 1089/1088, 1225/1224, 1701/1700, 4225/4224 | [⟨460 729 1068 1291 1591 1702 1880]] | +0.1624 | 0.1056 | 4.05 |
2.3.5.7.11.13.17.19 | 833/832, 1001/1000, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1617/1615 | [⟨460 729 1068 1291 1591 1702 1880 1954]] | +0.1457 | 0.1082 | 4.15 |
- 460et has lower absolute errors in the 17- and 19-limit than any previous equal temperaments. It beats 422 in either subgroup, and is bettered by 494 in the 17-limit, and 525 in the 19-limit.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 9\460 | 23.48 | 531441/524288 | Commatose |
1 | 121\460 | 315.65 | 6/5 | Egads |
1 | 191\460 | 498.26 | 4/3 | Pontiac |
10 | 121\460 (17\460) |
315.65 (44.35) |
6/5 (40/39) |
Deca |
20 | 66\460 (20\460) |
172.173 (52.173) |
169/153 (?) |
Calcium |
20 | 217\460 (10\460) |
566.086 (26.086) |
238/165 (?) |
Soviet ferris wheel |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct