4L 6s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cleanup; +specific cent value of hemipyth tuning
BudjarnLambeth (talk | contribs)
m == Intervals == {{MOS intervals}}
Line 8: Line 8:
| Name = lime
| Name = lime
}}
}}
{{MOS intro}}
== Intervals ==
{{MOS intervals}}


{{MOS intro}}
== Modes ==
== Modes ==
{{MOS mode degrees}}
{{MOS mode degrees}}

Revision as of 00:19, 16 December 2024

↖ 3L 5s ↑ 4L 5s 5L 5s ↗
← 3L 6s 4L 6s 5L 6s →
↙ 3L 7s ↓ 4L 7s 5L 7s ↘
┌╥┬╥┬┬╥┬╥┬┬┐
│║│║││║│║│││
││││││││││││
└┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LsLssLsLss
ssLsLssLsL
Equave 2/1 (1200.0 ¢)
Period 1\2 (600.0 ¢)
Generator size
Bright 2\10 to 1\4 (240.0 ¢ to 300.0 ¢)
Dark 1\4 to 3\10 (300.0 ¢ to 360.0 ¢)
TAMNAMS information
Name lime
Prefix lime-
Abbrev. lm
Related MOS scales
Parent 4L 2s
Sister 6L 4s
Daughters 10L 4s, 4L 10s
Neutralized 8L 2s
2-Flought 14L 6s, 4L 16s
Equal tunings
Equalized (L:s = 1:1) 2\10 (240.0 ¢)
Supersoft (L:s = 4:3) 7\34 (247.1 ¢)
Soft (L:s = 3:2) 5\24 (250.0 ¢)
Semisoft (L:s = 5:3) 8\38 (252.6 ¢)
Basic (L:s = 2:1) 3\14 (257.1 ¢)
Semihard (L:s = 5:2) 7\32 (262.5 ¢)
Hard (L:s = 3:1) 4\18 (266.7 ¢)
Superhard (L:s = 4:1) 5\22 (272.7 ¢)
Collapsed (L:s = 1:0) 1\4 (300.0 ¢)

4L 6s, named lime in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 4 large steps and 6 small steps, with a period of 2 large steps and 3 small steps that repeats every 600.0 ¢, or twice every octave. Generators that produce this scale range from 240 ¢ to 300 ¢, or from 300 ¢ to 360 ¢.

Intervals

Intervals of 4L 6s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-limestep Perfect 0-limestep P0lms 0 0.0 ¢
1-limestep Minor 1-limestep m1lms s 0.0 ¢ to 120.0 ¢
Major 1-limestep M1lms L 120.0 ¢ to 300.0 ¢
2-limestep Diminished 2-limestep d2lms 2s 0.0 ¢ to 240.0 ¢
Perfect 2-limestep P2lms L + s 240.0 ¢ to 300.0 ¢
3-limestep Perfect 3-limestep P3lms L + 2s 300.0 ¢ to 360.0 ¢
Augmented 3-limestep A3lms 2L + s 360.0 ¢ to 600.0 ¢
4-limestep Minor 4-limestep m4lms L + 3s 300.0 ¢ to 480.0 ¢
Major 4-limestep M4lms 2L + 2s 480.0 ¢ to 600.0 ¢
5-limestep Perfect 5-limestep P5lms 2L + 3s 600.0 ¢
6-limestep Minor 6-limestep m6lms 2L + 4s 600.0 ¢ to 720.0 ¢
Major 6-limestep M6lms 3L + 3s 720.0 ¢ to 900.0 ¢
7-limestep Diminished 7-limestep d7lms 2L + 5s 600.0 ¢ to 840.0 ¢
Perfect 7-limestep P7lms 3L + 4s 840.0 ¢ to 900.0 ¢
8-limestep Perfect 8-limestep P8lms 3L + 5s 900.0 ¢ to 960.0 ¢
Augmented 8-limestep A8lms 4L + 4s 960.0 ¢ to 1200.0 ¢
9-limestep Minor 9-limestep m9lms 3L + 6s 900.0 ¢ to 1080.0 ¢
Major 9-limestep M9lms 4L + 5s 1080.0 ¢ to 1200.0 ¢
10-limestep Perfect 10-limestep P10lms 4L + 6s 1200.0 ¢

Modes

Scale degrees of the modes of 4L 6s
UDP Cyclic
order
Step
pattern
Scale degree (limedegree)
0 1 2 3 4 5 6 7 8 9 10
8|0(2) 1 LsLssLsLss Perf. Maj. Perf. Aug. Maj. Perf. Maj. Perf. Aug. Maj. Perf.
6|2(2) 3 LssLsLssLs Perf. Maj. Perf. Perf. Maj. Perf. Maj. Perf. Perf. Maj. Perf.
4|4(2) 5 sLsLssLsLs Perf. Min. Perf. Perf. Maj. Perf. Min. Perf. Perf. Maj. Perf.
2|6(2) 2 sLssLsLssL Perf. Min. Perf. Perf. Min. Perf. Min. Perf. Perf. Min. Perf.
0|8(2) 4 ssLsLssLsL Perf. Min. Dim. Perf. Min. Perf. Min. Dim. Perf. Min. Perf.

Proposed names

Lyman Young has proposed names for the modes of 4L 6s, which are shown below. They can be found in his patent for a quartertone slide rule.

Modes names of 4L 6s
UDP Step pattern Lyman Young's names
0 LsLssLsLss Atlantic
2 LssLsLssLs Lumian
4 sLsLssLsLs Pacific
6 sLssLsLssL Taliesin
8 ssLsLssLsL Dresden

Scale tree

Template:Scale tree

Music

Cole