643edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cleanup; linking; clarify the title row of the rank-2 temp table; -redundant categories
ArrowHead294 (talk | contribs)
mNo edit summary
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 70: Line 62:
| 0.0801
| 0.0801
| 4.29
| 4.29
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 92: Line 78:
| 4/3
| 4/3
| [[Helmholtz]]
| [[Helmholtz]]
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}


[[Category:Sesquiquartififths]]
[[Category:Sesquiquartififths]]
[[Category:Vili]]
[[Category:Vili]]

Revision as of 04:16, 16 November 2024

← 642edo 643edo 644edo →
Prime factorization 643 (prime)
Step size 1.86625 ¢ 
Fifth 376\643 (701.711 ¢)
Semitones (A1:m2) 60:49 (112 ¢ : 91.45 ¢)
Consistency limit 21
Distinct consistency limit 21

Template:EDO intro

Theory

643edo is distinctly consistent to the 21-odd-limit, with a generally flat tendency, but the 5th harmonic is only 0.000439 cents sharp as the denominator of a convergent to log25, after 146 and before 4004. It tempers out 32805/32768 in the 5-limit and 2401/2400 in the 7-limit, so that it supports the sesquiquartififths temperament. In the 11-limit it tempers out 3025/3024 and 151263/151250; in the 13-limit 1001/1000, 1716/1715 and 4225/4224; in the 17-limit 1089/1088, 1701/1700, 2431/2430 and 2601/2600; and in the 19-limit 1331/1330, 1521/1520, 1729/1728, 2376/2375 and 2926/2925. It provides the optimal patent val for the rank-3 13-limit vili temperament.

Prime harmonics

Approximation of prime harmonics in 643edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.244 +0.000 -0.241 -0.774 -0.714 -0.445 -0.779 +0.653 +0.594 +0.843
Relative (%) +0.0 -13.1 +0.0 -12.9 -41.5 -38.3 -23.9 -41.7 +35.0 +31.8 +45.2
Steps
(reduced)
643
(0)
1019
(376)
1493
(207)
1805
(519)
2224
(295)
2379
(450)
2628
(56)
2731
(159)
2909
(337)
3124
(552)
3186
(614)

Subsets and supersets

643edo is the 117th prime edo.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-1019 643 | [643 1019]] | +0.0771 | 0.0771 | 4.13 |- | 2.3.5 | 32805/32768, [1 99 -68 | [643 1019 1493]] | +0.0513 | 0.7270 | 3.90 |- | 2.3.5.7 | 2401/2400, 32805/32768, [9 21 -17 -1 | [643 1019 1493 1805]] | +0.0600 | 0.0647 | 3.47 |- | 2.3.5.7.11 | 2401/2400, 3025/3024, 32805/32768, 391314/390625 | [643 1019 1493 1805 2224]] | +0.0927 | 0.0874 | 4.68 |- | 2.3.5.7.11.13 | 1001/1000, 1716/1715, 3025/3024, 4225/4224, 32805/32768 | [643 1019 1493 1805 2224 2379]] | +0.1094 | 0.0881 | 4.72 |- | 2.3.5.7.11.13.17 | 1001/1000, 1089/1088, 1701/1700, 1716/1715, 2601/2600, 4225/4224 |[643 1019 1493 1805 2224 2379 2628]] | +0.1094 | 0.0816 | 4.37 |- | 2.3.5.7.11.13.17.19 | 1001/1000, 1089/1088, 1521/1520, 1701/1700, 1716/1715, 1729/1728, 2601/2600 | [643 1019 1493 1805 2224 2379 2628 2731]] | +0.1186 | 0.0801 | 4.29 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 94\643 | 175.43 | 448/405 | Sesquiquartififths |- | 1 | 267\643 | 498.29 | 4/3 | Helmholtz Template:Rank-2 end Template:Orf