User:Unque/TERNAMS: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Unque (talk | contribs)
No edit summary
Unque (talk | contribs)
mNo edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Todo |expand|separate left-hand and right-hand modes for all chiral scales|establish and/or revamp mode names for several scales|inline=1}}
TERNAMS (pronounced /tərneɪmz/, ''TER-names'') is a system meant to provide tuning-agnostic names for MV3 ternary scales.  The name "TERNAMS" is a portmanteau of "ternary" and "names," specifically chosen by comparison to [[TAMNAMS]].
TERNAMS (pronounced /tərneɪmz/, ''TER-names'') is a system meant to provide tuning-agnostic names for MV3 ternary scales.  The name "TERNAMS" is a portmanteau of "ternary" and "names," specifically chosen by comparison to [[TAMNAMS]].


Line 47: Line 49:


=== Antinicetone (Chiral 2L2M3s) ===
=== Antinicetone (Chiral 2L2M3s) ===
Antinicetone is the inverse of the Nicetone scale.  It can be collapsed to form [[4L 3s|Smitonic]] (L = M), [[2L 5s|Antidiatonic]] (M = s), or [[2L 2s|Diwood]] (s = 0).  Since each mode of Antinicetone is a unique inversion of two different Nicetone modes, the modes can be named as a combination of the two modes which they invert.
Antinicetone is the inverse of the Nicetone scale.  It can be collapsed to form [[4L 3s|Smitonic]] (L = M), [[2L 5s|Antidiatonic]] (M = s), or [[2L 2s|Diwood]] (s = 0).
{| class="wikitable sortable"
{| class="wikitable sortable"
|+Antinicetone Modes
|+Left-Hand Antinicetone Modes
!Mode Name
!Mode Name
!Rotational Order
!Rotational Order
!Left-Hand Brightness
!Brightness
!Right-Hand Brightness
!Pattern
!Left-Hand Pattern
!Right-Hand Pattern
|-
|-
|Tritoprotus
|'''TBA'''
|1
|1
|2
|2
|sMLsMsL
|-
|'''TBA'''
|2
|5
|MLsMsLs
|-
|'''TBA'''
|3
|6
|LsMsLsM
|-
|'''TBA'''
|4
|1
|sMsLsML
|-
|'''TBA'''
|5
|4
|MsLsMLs
|-
|'''TBA'''
|6
|3
|sLsMLsM
|-
|'''TBA'''
|7
|7
|LsMLsMs
|}
{| class="wikitable sortable"
|+Right-Hand Antinicetone Modes
!Mode Name
!Rotational Order
!Brightness
!Pattern
|-
|'''TBA'''
|1
|4
|4
|sMLsMsL
|sLMsLsM
|sLMsLsM
|-
|-
|Deuterobarus
|'''TBA'''
|2
|2
|5
|2
|2
|MLsMsLs
|LMsLsMs
|LMsLsMs
|-
|-
|Protodeuterus
|'''TBA'''
|3
|3
|6
|6
|6
|LsMsLsM
|MsLsMsL
|MsLsMsL
|-
|-
|Baroprotus
|'''TBA'''
|4
|4
|1
|1
|1
|sMsLsML
|sLsMsLM
|sLsMsLM
|-
|-
|Hypotetarus
|'''TBA'''
|5
|5
|4
|5
|5
|MsLsMLs
|LsMsLMs
|LsMsLMs
|-
|-
|Hypotritus
|'''TBA'''
|6
|6
|3
|3
|3
|sLsMLsM
|sMsLMsL
|sMsLMsL
|-
|-
|Tetarodeuterus
|'''TBA'''
|7
|7
|7
|7
|7
|LsMLsMs
|MsLMsLs
|MsLMsLs
|}
|}


=== Omnidiatonic (Chiral 2L3M2s) ===
=== Omnidiatonic (Chiral 2L3M2s) ===
[[Omnidiatonic]] is a scale that can be collapsed into both standard [[5L 2s|Diatonic]] (L = M) and [[2L 5s|Antidiatonic]] (M = s), as well as their parental [[2L 3s|Pentatonic scale]] (s = 0).  Its seven modes can be named with respect to the corresponding modes of Diatonic.
[[Omnidiatonic]] is a scale that can be collapsed into both standard [[5L 2s|Diatonic]] (L = M) and [[2L 5s|Antidiatonic]] (M = s), as well as their parental [[2L 3s|Pentatonic scale]] (s = 0).
{| class="wikitable sortable"
{| class="wikitable sortable"
|+Omnidiatonic Modes
|+Left-Hand Omnidiatonic Modes
!Mode Name
!Mode Name
!Rotational Order
!Rotational Order
!Left-Hand Brightness
!Brightness
!Right-Hand Brightness
!Pattern
!Left-Hand Pattern
!Right-Hand Pattern
|-
|-
|Omnionian
|'''TBA'''
|1
|1
|4
|4
|MLsMLMs
|-
|'''TBA'''
|2
|6
|LsMLMsM
|-
|'''TBA'''
|3
|2
|sMLMsML
|-
|'''TBA'''
|4
|5
|MLMsMLs
|-
|'''TBA'''
|5
|7
|LMsMLsM
|-
|'''TBA'''
|6
|3
|MsMLsML
|-
|'''TBA'''
|7
|1
|sMLsMLM
|}
{| class="wikitable sortable"
|+Right-Hand Omnidiatonic Modes
!Mode Name
!Rotational Order
!Brightness
!Pattern
|-
|'''TBA'''
|1
|6
|6
|MLsMLMs
|LMsMLMs
|LMsMLMs
|-
|-
|Omnidorian
|'''TBA'''
|2
|2
|6
|3
|3
|LsMLMsM
|MsMLMsL
|MsMLMsL
|-
|-
|Omniphrygian
|'''TBA'''
|3
|3
|2
|1
|1
|sMLMsML
|sMLMsLM
|sMLMsLM
|-
|-
|Omnilydian
|'''TBA'''
|4
|4
|5
|5
|5
|MLMsMLs
|MLMsLMs
|MLMsLMs
|-
|-
|Omnimysian
|'''TBA'''
|5
|5
|7
|7
|7
|LMsMLsM
|LMsLMsM
|LMsLMsM
|-
|-
|Omnaeolian
|'''TBA'''
|6
|6
|3
|4
|4
|MsMLsML
|MsLMsML
|MsLMsML
|-
|-
|Omnilocrian
|'''TBA'''
|7
|7
|1
|2
|2
|sMLsMLM
|sLMsMLM
|sLMsMLM
|}
|}


=== Nicetone (Chiral 3L2M2s) ===
=== Nicetone (Chiral 3L2M2s) ===
The name "[[Nicetone]]" is chosen by comparison to [[Meantone family|Meantone]], as it is a variant of the Diatonic scale that distinguishes between two types of whole tones.  It can be collapsed to form [[5L 2s|Diatonic]] (L = M), [[3L 4s|Mosh]] (M = s), and [[3L 2s|Antipentic]] (s = 0).  The seven modes of this scale can be named after the Greek-language names of the Byzantine Octoechoi, as to distinguish them from the modes of MV2 diatonic.
The name "[[Nicetone]]" is chosen by comparison to [[Meantone family|Meantone]], as it is a variant of the Diatonic scale that distinguishes between two types of whole tones.  It can be collapsed to form [[5L 2s|Diatonic]] (L = M), [[3L 4s|Mosh]] (M = s), and [[3L 2s|Antipentic]] (s = 0).
{| class="wikitable sortable"
{| class="wikitable sortable"
|+Nicetone Modes
|+Left-Hand Nicetone Modes
!Mode Name
!Mode Name
!Rotational Order
!Rotational Order
!Left-Hand Brightness
!Brightness
!Right-Hand Brightness
!Pattern
!Left-Hand Pattern
!Right-Hand Pattern
|-
|-
|Tritus
|'''TBA'''
|1
|1
|4
|4
|MLsLMLs
|-
|'''TBA'''
|2
|6
|LsLMLsM
|-
|'''TBA'''
|3
|2
|sLMLsML
|-
|'''TBA'''
|4
|7
|LMLsMLs
|-
|'''TBA'''
|5
|3
|MLsMLsL
|-
|'''TBA'''
|6
|5
|LsMLsLM
|-
|'''TBA'''
|7
|1
|sMLsLML
|}
{| class="wikitable sortable"
|+Right-Hand Nicetone Modes
!Mode Name
!Rotational Order
!Brightness
!Pattern
|-
|'''TBA'''
|1
|6
|6
|MLsLMLs
|LMsLMLs
|LMsLMLs
|-
|-
|Deuterus
|'''TBA'''
|2
|2
|6
|3
|3
|LsLMLsM
|MsLMLsL
|MsLMLsL
|-
|-
|Protus
|'''TBA'''
|3
|3
|2
|2
|2
|sLMLsML
|sLMLsLM
|sLMLsLM
|-
|-
|Barus
|'''TBA'''
|4
|4
|7
|7
|7
|LMLsMLs
|LMLsLMs
|LMLsLMs
|-
|-
|Hypodeuterus
|'''TBA'''
|5
|5
|3
|4
|4
|MLsMLsL
|MLsLMsL
|MLsLMsL
|-
|-
|Hypoprotus
|'''TBA'''
|6
|6
|5
|5
|5
|LsMLsLM
|LsLMsLM
|LsLMsLM
|-
|-
|Tetarus
|'''TBA'''
|7
|7
|1
|1
|1
|sMLsLML
|sLMsLML
|sLMsLML
|}
|}


=== Smicot (Chiral 3L1M3s) ===
=== Smicot (Chiral 3L1M3s) ===
The name [[Smicot]] is a clipping of "'''S'''harp '''Mi'''nor Di'''cot'''," as it can be collapsed to form [[4L 3s|Smitonic]] (L = M), [[3L 4s|Dicot[7]]] (M = s), or their parent scale, [[3L 1s|Tetric]] (s = 0). The modes of this scale can be named with respect to [[Andrew Heathwaite]]'s names for the modes of Dicot[7]:
The name [[Smicot]] is a clipping of "'''S'''harp '''Mi'''nor Di'''cot'''," as it can be collapsed to form [[4L 3s|Smitonic]] (L = M), [[3L 4s|Dicot[7]]] (M = s), or their parent scale, [[3L 1s|Tetric]] (s = 0).
{| class="wikitable sortable"
{| class="wikitable sortable"
|+Smicot Modes
|+Smicot Modes
Line 366: Line 446:
|}
|}
=== Dhembric (Chiral 4L1M4s) ===
=== Dhembric (Chiral 4L1M4s) ===
The name "Dhembric" was suggested by [[User:Lériendil|Lériendil]] as a reference to [[User:Unque/Dhembrwood|Dhembrwood]], a temperament which utilizes both the left- and right-hand variations of this scale; as such, the names of its modes can be inherited from the Dhembrwood[9] mode names (as opposed to Dhembrwood[9], whose modes may be confused for those of Orbital).  This scale can be collapsed to form [[5L 4s|Semiquartal]] (L = M), [[4L 5s|Gramitonic]] (M = s), or [[4L 1s|Manual]] (s = 0).
The name "Dhembric" was suggested by [[User:Lériendil|Lériendil]] as a reference to [[User:Unque/Dhembrwood|Dhembrwood]], a temperament which utilizes both the left- and right-hand variations of this scale; while these modes have names in the context of the Dhembrwood temperament, the usage of these names for the Dhembric modes in general has been criticized for their lack of academic merit.  This scale can be collapsed to form [[5L 4s|Semiquartal]] (L = M), [[4L 5s|Gramitonic]] (M = s), or [[4L 1s|Manual]] (s = 0).
{| class="wikitable sortable"
{| class="wikitable sortable"
|+Dhembric Modes
|+Left-Hand Dhembric Modes
!Mode Name
!Mode Name
!Rotational Order
!Rotational Order
!Left-Hand Brightness
!Brightness
!Right-Hand Brightness
!Pattern
!Left-Hand Pattern
|-
!Right-Hand Pattern
|'''TBA'''
|1
|9
|LsLsLsLsM
|-
|'''TBA'''
|2
|4
|sLsLsLsML
|-
|'''TBA'''
|3
|8
|LsLsLsMLs
|-
|'''TBA'''
|4
|3
|sLsLsMLsL
|-
|'''TBA'''
|5
|7
|LsLsMLsLs
|-
|'''TBA'''
|6
|2
|sLsMLsLsL
|-
|'''TBA'''
|7
|6
|LsMLsLsLs
|-
|-
|Clumsy
|'''TBA'''
|8
|1
|1
|sMLsLsLsL
|-
|'''TBA'''
|9
|9
|5
|5
|LsLsLsLsM
|MLsLsLsLs
|}
{| class="wikitable sortable"
|+Right-Hand Dhembric Modes
!Mode Name
!Rotational Order
!Brightness
!Pattern
|-
|'''TBA'''
|1
|5
|MsLsLsLsL
|MsLsLsLsL
|-
|-
|Snoozy
|'''TBA'''
|2
|2
|4
|1
|1
|sLsLsLsML
|sLsLsLsLM
|sLsLsLsLM
|-
|-
|Cheerful
|'''TBA'''
|3
|3
|8
|6
|6
|LsLsLsMLs
|LsLsLsLMs
|LsLsLsLMs
|-
|-
|Fearful
|'''TBA'''
|4
|4
|3
|2
|2
|sLsLsMLsL
|sLsLsLMsL
|sLsLsLMsL
|-
|-
|Hyper
|'''TBA'''
|5
|5
|7
|7
|7
|LsLsMLsLs
|LsLsLMsLs
|LsLsLMsLs
|-
|-
|Hungry
|'''TBA'''
|6
|6
|2
|3
|3
|sLsMLsLsL
|sLsLMsLsL
|sLsLMsLsL
|-
|-
|Griselda
|'''TBA'''
|7
|7
|6
|8
|8
|LsMLsLsLs
|LsLMsLsLs
|LsLMsLsLs
|-
|-
|Ambidextrous
|'''TBA'''
|8
|8
|1
|4
|4
|sMLsLsLsL
|sLMsLsLsL
|sLMsLsLsL
|-
|-
|Sometimes Bewildered
|'''TBA'''
|9
|9
|5
|9
|9
|MLsLsLsLs
|LMsLsLsLs
|LMsLsLsLs
|}
|}


=== Diasem (Chiral 5L2M2s) ===
=== Diasem (Chiral 5L2M2s) ===
The chiral [[Diasem]] scale is named as a portmanteau of [[5L 2s|'''Dia'''tonic]] and [[5L 4s|'''Semi'''quartal]]; it can be collapsed to form [[7L 2s|Superdiatonic]] (L = M), Semiquartal (M = s) and Diatonic (s = 0); its nine modes can be named with respect to the seven modes of the Diatonic scale; the Dorisem and Cretisem modes both collapse to Dorian, and the Trojisem mode is ambiguous between Aeolian and Mixolydian.
The chiral [[Diasem]] scale is named as a portmanteau of [[5L 2s|'''Dia'''tonic]] and [[5L 4s|'''Semi'''quartal]]; it can be collapsed to form [[7L 2s|Superdiatonic]] (L = M), Semiquartal (M = s) and Diatonic (s = 0).  Some have suggested naming its nine modes after those of its collapsed scales, but this approach has been criticized for being ambiguous.
{| class="wikitable sortable"
{| class="wikitable sortable"
|+Diasem Modes
|+Left-Hand Diasem Modes
!Mode Name
!Mode Name
!Rotational Order
!Rotational Order
!Left-Hand Brightness
!Brightness
!Right-Hand Brightness
!Pattern
!Left-Hand Pattern
|-
!Right-Hand Pattern
|'''TBA'''
|1
|5
|LsLMLsLLM
|-
|-
|Ionisem
|'''TBA'''
|2
|1
|1
|sLMLsLLML
|-
|'''TBA'''
|3
|8
|LMLsLLMLs
|-
|'''TBA'''
|4
|4
|MLsLLMLsL
|-
|'''TBA'''
|5
|5
|6
|6
|LsLMLsLLM
|LsLLMLsLM
|-
|'''TBA'''
|6
|2
|sLLMLsLML
|-
|'''TBA'''
|7
|9
|LLMLsLMLs
|-
|'''TBA'''
|8
|7
|LMLsLMLsL
|-
|'''TBA'''
|9
|3
|MLsLMLsLL
|}
{| class="wikitable sortable"
|+Right-Hand Diasem Modes
!Mode Name
!Rotational Order
!Brightness
!Pattern
|-
|'''TBA'''
|1
|6
|LsLMLLsLM
|LsLMLLsLM
|-
|-
|Dorisem
|'''TBA'''
|2
|2
|1
|2
|2
|sLMLsLLML
|sLMLLsLML
|sLMLLsLML
|-
|-
|Cretisem
|'''TBA'''
|3
|3
|8
|8
|8
|LMLsLLMLs
|LMLLsLMLs
|LMLLsLMLs
|-
|-
|Phrygisem
|'''TBA'''
|4
|4
|4
|4
|4
|MLsLLMLsL
|MLLsLMLsL
|MLLsLMLsL
|-
|-
|Lydisem
|'''TBA'''
|5
|5
|6
|9
|9
|LsLLMLsLM
|LLsLMLsLM
|LLsLMLsLM
|-
|-
|Mixosem
|'''TBA'''
|6
|6
|2
|5
|5
|sLLMLsLML
|LsLMLsLML
|LsLMLsLML
|-
|-
|Trojisem
|'''TBA'''
|7
|7
|9
|1
|1
|LLMLsLMLs
|sLMLsLMLL
|sLMLsLMLL
|-
|-
|Aeolisem
|'''TBA'''
|8
|8
|7
|7
|7
|LMLsLMLsL
|LMLsLMLLs
|LMLsLMLLs
|-
|-
|Locrisem
|'''TBA'''
|9
|9
|3
|3
|3
|MLsLMLsLL
|MLsLMLLsL
|MLsLMLLsL
|}
|}

Latest revision as of 18:07, 12 November 2024

Todo: expand , separate left-hand and right-hand modes for all chiral scales, establish and/or revamp mode names for several scales

TERNAMS (pronounced /tərneɪmz/, TER-names) is a system meant to provide tuning-agnostic names for MV3 ternary scales. The name "TERNAMS" is a portmanteau of "ternary" and "names," specifically chosen by comparison to TAMNAMS.

TERNAMS aims to fix the problem wherein ternary scales and their modes cannot be concisely described with numbers in the same manner that MOS scales can. While a MV2 MOS scale can be described in terms of large and small steps, many MV3 ternary scales have separate chiral and achiral patterns with the same number of steps. Additionally, while a mode of a MV2 MOS scale can be described by how many generators are stacked up/down from the root, many MV3 ternary scales cannot be made with generators at all.

For the purposes of TERNAMS, the left-hand and right-hand variants of chiral scales will be considered equivalent scales; when disambiguation is needed, Levo- can be prefixed for the left-hand orientation, and Dextro- for the right-hand.

This page will document any and all MV3 ternary scales, and the modes thereof, that have been named in the TERNAMS system thus far.

Five-Note Scales

Dactylic (Achiral 1L2M2s)

The name "Dactylic" was given by Unque, from the Greek Dactylus, meaning "finger"; the five modes are thus named for the Greek terms for the five fingers. Dactylic can be collapsed to form Antipentic (L = M), Antimanual (M = s), or Antrial (s = 0).

Dactylic Modes
Mode Name Rotational Order Brightness Step Pattern
Deictian 1 4 MLMss
Mesaian 2 5 LMssM
Dactylidian 3 3 MssML
Micrian 4 1 ssMLM
Anticheirian 5 2 sMLMs

Seven-Note Scales

Antinicetone (Chiral 2L2M3s)

Antinicetone is the inverse of the Nicetone scale. It can be collapsed to form Smitonic (L = M), Antidiatonic (M = s), or Diwood (s = 0).

Left-Hand Antinicetone Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 2 sMLsMsL
TBA 2 5 MLsMsLs
TBA 3 6 LsMsLsM
TBA 4 1 sMsLsML
TBA 5 4 MsLsMLs
TBA 6 3 sLsMLsM
TBA 7 7 LsMLsMs
Right-Hand Antinicetone Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 4 sLMsLsM
TBA 2 2 LMsLsMs
TBA 3 6 MsLsMsL
TBA 4 1 sLsMsLM
TBA 5 5 LsMsLMs
TBA 6 3 sMsLMsL
TBA 7 7 MsLMsLs

Omnidiatonic (Chiral 2L3M2s)

Omnidiatonic is a scale that can be collapsed into both standard Diatonic (L = M) and Antidiatonic (M = s), as well as their parental Pentatonic scale (s = 0).

Left-Hand Omnidiatonic Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 4 MLsMLMs
TBA 2 6 LsMLMsM
TBA 3 2 sMLMsML
TBA 4 5 MLMsMLs
TBA 5 7 LMsMLsM
TBA 6 3 MsMLsML
TBA 7 1 sMLsMLM
Right-Hand Omnidiatonic Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 6 LMsMLMs
TBA 2 3 MsMLMsL
TBA 3 1 sMLMsLM
TBA 4 5 MLMsLMs
TBA 5 7 LMsLMsM
TBA 6 4 MsLMsML
TBA 7 2 sLMsMLM

Nicetone (Chiral 3L2M2s)

The name "Nicetone" is chosen by comparison to Meantone, as it is a variant of the Diatonic scale that distinguishes between two types of whole tones. It can be collapsed to form Diatonic (L = M), Mosh (M = s), and Antipentic (s = 0).

Left-Hand Nicetone Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 4 MLsLMLs
TBA 2 6 LsLMLsM
TBA 3 2 sLMLsML
TBA 4 7 LMLsMLs
TBA 5 3 MLsMLsL
TBA 6 5 LsMLsLM
TBA 7 1 sMLsLML
Right-Hand Nicetone Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 6 LMsLMLs
TBA 2 3 MsLMLsL
TBA 3 2 sLMLsLM
TBA 4 7 LMLsLMs
TBA 5 4 MLsLMsL
TBA 6 5 LsLMsLM
TBA 7 1 sLMsLML

Smicot (Chiral 3L1M3s)

The name Smicot is a clipping of "Sharp Minor Dicot," as it can be collapsed to form Smitonic (L = M), Dicot[7] (M = s), or their parent scale, Tetric (s = 0).

Smicot Modes
Mode Name Rotational Order Left-Hand Brightness Right-Hand Brightness Left-Hand Pattern Right-Hand Pattern
Omnidril 1 6 5 LsLsLsM LsLsLMs
Omnigil 2 1 2 sLsLsML sLsLMsL
Omnikleeth 3 5 6 LsLsMLs LsLMsLs
Omnibish 4 2 3 sLsMLsL sLMsLsL
Omnifish 5 4 7 LsMLsLs LMsLsLs
Omnijwl 6 3 4 sLMsLsL MsLsLsL
Omniled 7 7 1 LMsLsLs sLsLsLM

Nine-Note Scales

Orbital (Chiral 2L2M5s)

The name "Orbital" was workshopped by CellularAutomaton and Unque as a joint pun on Orwell and Balzano. This scale can be collapsed to form Gramitonic (L = M), Balzano (M = s), or Diwood (s = 0). Its nine modes can be named after the demonyms for the nine planets of the solar system.

Mode Name Rotational Order Left-Hand Brightness Right-Hand Brightness Left-Hand Pattern Right-Hand Pattern
Mercurian 1 7 9 MsLsMsLss LsMsLsMss
Cytherian 2 5 3 sLsMsLssM sMsLsMssL
Terrestrial 3 9 7 LsMsLssMs MsLsMssLs
Martian 4 2 4 sMsLssMsL sLsMssLsM
Jovian 5 6 8 MsLssMsLs LsMssLsMs
Cronian 6 4 2 sLssMsLsM sMssLsMsL
Uranian 7 8 6 LssMsLsMs MssLsMsLs
Neptunian 8 1 1 ssMsLsMsL ssLsMsLsM
Plutonian 9 3 5 sMsLsMsLs sLsMsLsMs

Dhembric (Chiral 4L1M4s)

The name "Dhembric" was suggested by Lériendil as a reference to Dhembrwood, a temperament which utilizes both the left- and right-hand variations of this scale; while these modes have names in the context of the Dhembrwood temperament, the usage of these names for the Dhembric modes in general has been criticized for their lack of academic merit. This scale can be collapsed to form Semiquartal (L = M), Gramitonic (M = s), or Manual (s = 0).

Left-Hand Dhembric Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 9 LsLsLsLsM
TBA 2 4 sLsLsLsML
TBA 3 8 LsLsLsMLs
TBA 4 3 sLsLsMLsL
TBA 5 7 LsLsMLsLs
TBA 6 2 sLsMLsLsL
TBA 7 6 LsMLsLsLs
TBA 8 1 sMLsLsLsL
TBA 9 5 MLsLsLsLs
Right-Hand Dhembric Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 5 MsLsLsLsL
TBA 2 1 sLsLsLsLM
TBA 3 6 LsLsLsLMs
TBA 4 2 sLsLsLMsL
TBA 5 7 LsLsLMsLs
TBA 6 3 sLsLMsLsL
TBA 7 8 LsLMsLsLs
TBA 8 4 sLMsLsLsL
TBA 9 9 LMsLsLsLs

Diasem (Chiral 5L2M2s)

The chiral Diasem scale is named as a portmanteau of Diatonic and Semiquartal; it can be collapsed to form Superdiatonic (L = M), Semiquartal (M = s) and Diatonic (s = 0). Some have suggested naming its nine modes after those of its collapsed scales, but this approach has been criticized for being ambiguous.

Left-Hand Diasem Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 5 LsLMLsLLM
TBA 2 1 sLMLsLLML
TBA 3 8 LMLsLLMLs
TBA 4 4 MLsLLMLsL
TBA 5 6 LsLLMLsLM
TBA 6 2 sLLMLsLML
TBA 7 9 LLMLsLMLs
TBA 8 7 LMLsLMLsL
TBA 9 3 MLsLMLsLL
Right-Hand Diasem Modes
Mode Name Rotational Order Brightness Pattern
TBA 1 6 LsLMLLsLM
TBA 2 2 sLMLLsLML
TBA 3 8 LMLLsLMLs
TBA 4 4 MLLsLMLsL
TBA 5 9 LLsLMLsLM
TBA 6 5 LsLMLsLML
TBA 7 1 sLMLsLMLL
TBA 8 7 LMLsLMLLs
TBA 9 3 MLsLMLLsL