3L 2s (3/2-equivalent): Difference between revisions
→Scale tree: Standardised precision |
No edit summary |
||
(34 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox MOS | {{Infobox MOS}} | ||
'''3L 2s<span class="Unicode">⟨</span>3/2<span class="Unicode">⟩</span>''' (sometimes called '''uranian'''), is a fifth-repeating MOS scale. The notation "<span class="Unicode">⟨</span>3/2<span class="Unicode">⟩</span>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 2s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). It is a [[Warped diatonic|warped diatonic scale]] because it has one extra small step compared to the 3/2-equivalent version of diatonic ([[3L 1s (3/2-equivalent)|3L 1s<span class="Unicode">⟨</span>3/2<span class="Unicode">⟩</span>]]): for example, the Ionian diatonic fifth LLsL can be distorted to the Oberonan mode LsLLs. | |||
}} | |||
'''3L 2s<3/2>''' (sometimes called '''uranian'''), is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 2s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). | |||
The generator range is 234 to 280.8 cents, placing it in between the [[9/8|diatonic major second]] and the [[6/5|diatonic minor third]], usually representing a subminor third of some type (like [[7/6]]). The bright (chroma-positive) generator is, however, its fifth complement (468 to 421.2 cents). | The generator range is 234 to 280.8 cents, placing it in between the [[9/8|diatonic major second]] and the [[6/5|diatonic minor third]], usually representing a subminor third of some type (like [[7/6]]). The bright (chroma-positive) generator is, however, its fifth complement (468 to 421.2 cents). | ||
Line 29: | Line 21: | ||
!Superhard | !Superhard | ||
|- | |- | ||
! | !Uranian | ||
! | !Annapolis | ||
!18edf | !18edf | ||
!13edf | !13edf | ||
Line 92: | Line 84: | ||
|5\18 | |5\18 | ||
194.9875 | 194.9875 | ||
|4\13 | | rowspan="2" |4\13 | ||
215.9862 | 215.9862 | ||
|7\21 | |7\21 | ||
233.985 | 233.985 | ||
|3\8 | |||
263.2331 | |||
|8\19 | |8\19 | ||
295.56 | 295.56 | ||
Line 105: | Line 97: | ||
350.9775 | 350.9775 | ||
|- | |- | ||
|Cb | |||
|Γb | |||
|6\18 | |||
233.985 | |||
|6\21 | |||
200.5586 | |||
|2\8 | |||
175.48875 | |||
|4\19 | |||
147.78 | |||
|2\11 | |||
127.6282 | |||
|2\14 | |||
100.2793 | |||
|- | |- | ||
|C | |'''C''' | ||
|Γ | |'''Γ''' | ||
|'''7\18''' | |||
'''272.9825''' | |||
|'''5\13''' | |||
'''269.9829''' | |||
|'''8\21''' | |||
'''267.4114''' | |||
|'''3\8''' | |||
'''263.2331''' | |||
|'''7\19''' | |||
'''258.615''' | |||
|'''4\11''' | |||
'''255.2564''' | |||
|'''5\14''' | |||
'''250.6982''' | |||
|- | |||
|C# | |||
|Γ# | |||
|8\18 | |8\18 | ||
311.98 | 311.98 | ||
Line 128: | Line 137: | ||
|10\21 | |10\21 | ||
334.2643 | 334.2643 | ||
|4\8 | | rowspan="2" |4\8 | ||
350.9775 | 350.9775 | ||
| | |9\19 | ||
332.505 | |||
|6\11 | |6\11 | ||
382.88455 | 382.88455 | ||
|8\14 | |8\14 | ||
401.1171 | 401.1171 | ||
|- | |- | ||
|Db | |Db | ||
Line 158: | Line 150: | ||
|10\18 | |10\18 | ||
389.975 | 389.975 | ||
|7\13 | |||
377.9758 | |||
|11\21 | |11\21 | ||
367.9607 | 367.9607 | ||
| | |10\19 | ||
369.45 | |||
|5\11 | |5\11 | ||
319.07045 | 319.07045 | ||
Line 169: | Line 162: | ||
300.8379 | 300.8379 | ||
|- | |- | ||
|D | |'''D''' | ||
|Δ | |'''Δ''' | ||
|11\18 | |'''11\18''' | ||
428.9725 | '''428.9725''' | ||
|8\13 | |'''8\13''' | ||
431.9723 | '''431.9723''' | ||
|13\21 | |'''13\21''' | ||
434.5436 | '''434.5436''' | ||
|5\8 | |'''5\8''' | ||
438.7219 | '''438.7219''' | ||
|12\19 | |'''12\19''' | ||
'''470.285''' | |||
|7\11 | |'''7\11''' | ||
446.6986 | '''446.6986''' | ||
|9\14 | |'''9\14''' | ||
451.2568 | '''451.2568''' | ||
|- | |- | ||
|D# | |D# | ||
Line 205: | Line 198: | ||
|Eb | |Eb | ||
|Εb | |Εb | ||
| | |14\18 | ||
545.965 | |||
|10\13 | |10\13 | ||
539.9653 | 539.9653 | ||
Line 324: | Line 317: | ||
|23\18 | |23\18 | ||
896.9425 | 896.9425 | ||
|17\13 | | rowspan="2" |17\13 | ||
917.9412 | 917.9412 | ||
|28\21 | |28\21 | ||
935. | 935.9406 | ||
|11\8 | |||
965.1881 | 965.1881 | ||
|27\19 | |27\19 | ||
Line 337: | Line 330: | ||
1052.9235 | 1052.9235 | ||
|- | |- | ||
|Cb | |||
|Ηb | |||
|24\18 | |||
935.94 | |||
|27\21 | |||
902.5136 | |||
|10\8 | |||
877.44375 | |||
|23\19 | |||
849.753 | |||
|13\11 | |||
829.5832 | |||
|16\14 | |||
802.2343 | |||
|- | |- | ||
|C | |'''C''' | ||
|Η | |'''Η''' | ||
|'''25\18''' | |||
'''974.9375''' | |||
|'''18\13''' | |||
'''971.9379''' | |||
|'''29\21''' | |||
'''969.3664''' | |||
|'''11\8''' | |||
'''965.1881''' | |||
|'''26\19''' | |||
'''960.57''' | |||
|'''15\11''' | |||
'''957.2114''' | |||
|'''19\14''' | |||
'''952.6532''' | |||
|- | |||
|C# | |||
|Η# | |||
|26\18 | |26\18 | ||
1012.935 | 1012.935 | ||
Line 360: | Line 370: | ||
|31\21 | |31\21 | ||
1036.2193 | 1036.2193 | ||
|12\8 | | rowspan="2" |12\8 | ||
1052.9235 | 1052.9235 | ||
|29\19 | |29\19 | ||
Line 368: | Line 378: | ||
|22\14 | |22\14 | ||
1103.0721 | 1103.0721 | ||
|- | |- | ||
|Db | |Db | ||
Line 390: | Line 383: | ||
|28\18 | |28\18 | ||
1091.93 | 1091.93 | ||
|20\13 | |||
1079.9308 | |||
|32\21 | |32\21 | ||
1069.9157 | 1069.9157 | ||
|28\19 | |28\19 | ||
1034.46 | 1034.46 | ||
Line 401: | Line 394: | ||
1002.7929 | 1002.7929 | ||
|- | |- | ||
|D | |'''D''' | ||
|Θ | |'''Θ''' | ||
|29\18 | |'''29\18''' | ||
1130.9275 | '''1130.9275''' | ||
|21\13 | |'''21\13''' | ||
1133.9273 | '''1133.9273''' | ||
|34\21 | |'''34\21''' | ||
1136.4986 | '''1136.4986''' | ||
|13\8 | |'''13\8''' | ||
1140.7769 | '''1140.7769''' | ||
|31\19 | |'''31\19''' | ||
1145.295 | '''1145.295''' | ||
|18\11 | |'''18\11''' | ||
1148.6536 | '''1148.6536''' | ||
|23\14 | |'''23\14''' | ||
1153.2118 | '''1153.2118''' | ||
|- | |- | ||
|D# | |D# | ||
Line 437: | Line 430: | ||
|Eb | |Eb | ||
|Ιb | |Ιb | ||
| | |32\18 | ||
1247.92 | |||
|23\13 | |23\13 | ||
1241.9203 | 1241.9203 | ||
Line 524: | Line 517: | ||
|1 | |1 | ||
|C | |C | ||
|perfect | |perfect 2-mosstep (min third) | ||
| -1 | | -1 | ||
|D | |D | ||
|perfect | |perfect 3-mosstep (maj third) | ||
|- | |- | ||
|2 | |2 | ||
|Eb | |Eb | ||
|minor | |minor 4-mosstep | ||
| -2 | | -2 | ||
|B | |B | ||
|major | |major 1-mosstep | ||
|- | |- | ||
|3 | |3 | ||
|Bb | |Bb | ||
|minor | |minor 1-mosstep | ||
| -3 | | -3 | ||
|E | |E | ||
|major | |major 4-mosstep | ||
|- | |- | ||
|4 | |4 | ||
|Db | |Db | ||
|diminished | |diminished 3-mosstep | ||
| -4 | | -4 | ||
|C# | |C# | ||
|augmented | |augmented 2-mosstep | ||
|- | |- | ||
| colspan="6" |The chromatic 8-note MOS also has the following intervals (from some root): | | colspan="6" |The chromatic 8-note MOS also has the following intervals (from some root): | ||
|- | |- | ||
| | |5 | ||
|Ab | |Ab | ||
|diminished sesquitave | |diminished sesquitave | ||
| - | | -5 | ||
|A# | |A# | ||
|augmented | |augmented 0-mosstep (chroma) | ||
|- | |- | ||
| | |6 | ||
|Cb | |Cb | ||
|diminished | |diminished 2-mosstep | ||
| - | | -6 | ||
|D# | |D# | ||
|augmented | |augmented 3-mosstep | ||
|- | |- | ||
| | |7 | ||
|Ebb | |Ebb | ||
|diminished | |diminished 4-mosstep | ||
| - | | -7 | ||
|B# | |B# | ||
|augmented | |augmented 1-mosstep | ||
|} | |} | ||
Line 672: | Line 665: | ||
== Temperaments == | == Temperaments == | ||
The most basic rank-2 temperament interpretation of uranian is '''semiwolf''', which has 4:7:10 chords spelled <code>root-(p+1g)-(3p-2g)</code> (p = 3/2, g = the approximate 7/6). The name "semiwolf" comes from two [[7/6]] generators approximating a [[27/20]] wolf fourth. This is further extended to the 11-limit in two interpretations: '''semilupine''' where 2 major | The most basic rank-2 temperament interpretation of uranian is '''semiwolf''', which has 4:7:10 chords spelled <code>root-(p+1g)-(3p-2g)</code> (p = 3/2, g = the approximate 7/6). The name "semiwolf" comes from two [[7/6]] generators approximating a [[27/20]] wolf fourth. This is further extended to the 11-limit in two interpretations: '''semilupine''' where 2 major 2-mossteps (LL) equal 11/9, and '''hemilycan''' where 1 major and 2 minor 2-mossteps (sLs) equal 11/9. Basic 8edf fits both extensions. | ||
===Semiwolf=== | ===Semiwolf=== | ||
[[Subgroup]]: 3/2.7/4.5/2 | [[Subgroup]]: 3/2.7/4.5/2 | ||
Line 682: | Line 675: | ||
[[Mapping]]: [{{val|1 1 3}}, {{val|0 1 -2}}] | [[Mapping]]: [{{val|1 1 3}}, {{val|0 1 -2}}] | ||
{{Optimal ET sequence|legend=1|8edf, 11edf, 13edf}} | |||
====Semilupine==== | ====Semilupine==== | ||
[[Subgroup]]: 3/2.7/4.5/2.11/4 | [[Subgroup]]: 3/2.7/4.5/2.11/4 | ||
Line 692: | Line 685: | ||
[[Mapping]]: [{{val|1 1 3 4}}, {{val|0 1 -2 -4}}] | [[Mapping]]: [{{val|1 1 3 4}}, {{val|0 1 -2 -4}}] | ||
{{Optimal ET sequence|legend=1|8edf, 13edf}} | |||
====Hemilycan==== | ====Hemilycan==== | ||
[[Subgroup]]: 3/2.7/4.5/2.11/4 | [[Subgroup]]: 3/2.7/4.5/2.11/4 | ||
Line 702: | Line 695: | ||
[[Mapping]]: [{{val|1 1 3 1}}, {{val|0 1 -2 4}}] | [[Mapping]]: [{{val|1 1 3 1}}, {{val|0 1 -2 4}}] | ||
{{Optimal ET sequence|legend=1|8edf, 11edf}} | |||
== Scale tree== | == Scale tree== | ||
The spectrum looks like this: | The spectrum looks like this: | ||
{| class="wikitable" | {| class="wikitable" | ||
! colspan=" | ! colspan="6" rowspan="2" |Generator | ||
(bright) | (bright) | ||
! colspan="2" |Cents | ! colspan="2" |Cents | ||
Line 719: | Line 712: | ||
|- | |- | ||
|3\5 | |3\5 | ||
| | |||
| | |||
| | | | ||
| | | | ||
Line 729: | Line 724: | ||
|Equalised | |Equalised | ||
|- | |- | ||
|11\18 | |||
| | |||
| | |||
| | | | ||
| | | | ||
| | | | ||
|428.973 | |428.973 | ||
|272.983 | |272.983 | ||
Line 741: | Line 738: | ||
|- | |- | ||
| | | | ||
|30\49 | |||
| | |||
| | |||
| | |||
| | |||
|429.768 | |||
|272.187 | |||
|11 | |||
|8 | |||
|1.375 | |||
| | |||
|- | |||
| | |||
|19\31 | |||
| | | | ||
| | |||
| | |||
| | |||
|430.2305 | |||
|271.7255 | |||
|7 | |||
|5 | |||
|1.400 | |||
| | |||
|- | |||
|8\13 | |8\13 | ||
| | |||
| | |||
| | |||
| | |||
| | | | ||
|431.972 | |431.972 | ||
Line 752: | Line 777: | ||
|- | |- | ||
| | | | ||
| | |||
|37\60 | |||
| | |||
| | |||
| | |||
|432.872 | |||
|269.083 | |||
|14 | |||
|9 | |||
|1.556 | |||
| | |||
|- | |||
| | |||
|29\47 | |||
| | | | ||
| | |||
| | |||
| | |||
|433.121 | |||
|268.834 | |||
|11 | |||
|7 | |||
|1.571 | |||
| | |||
|- | |||
| | |||
|21\34 | |||
| | |||
| | |||
| | |||
| | |||
|433.56 | |||
|268.395 | |||
|8 | |||
|5 | |||
|1.600 | |||
| | |||
|- | |||
| | |||
| | |||
|34\55 | |||
| | |||
| | |||
| | |||
|433.935 | |||
|268.02 | |||
|13 | |||
|8 | |||
|1.625 | |||
| | |||
|- | |||
| | | | ||
|13\21 | |13\21 | ||
| | |||
| | |||
| | |||
| | |||
|435.084 | |435.084 | ||
|266.871 | |266.871 | ||
Line 763: | Line 842: | ||
|- | |- | ||
| | | | ||
|18\29 | |||
| | |||
| | |||
| | |||
| | |||
|435.696 | |||
|266.259 | |||
|7 | |||
|4 | |||
|1.750 | |||
| | |||
|- | |||
| | |||
|23\37 | |||
| | |||
| | |||
| | |||
| | |||
|436.35 | |||
|265.605 | |||
|9 | |||
|5 | |||
|1.800 | |||
| | |||
|- | |||
| | |||
|28\45 | |||
| | |||
| | |||
| | |||
| | |||
|436.772 | |||
|265.183 | |||
|11 | |||
|6 | |||
|1.833 | |||
| | |||
|- | |||
| | |||
| | |||
|33\53 | |||
| | |||
| | |||
| | |||
|437.066 | |||
|264.889 | |||
|13 | |||
|7 | |||
|1.857 | |||
| | |||
|- | |||
|5\8 | |5\8 | ||
| | |||
| | |||
| | |||
| | | | ||
| | | | ||
Line 775: | Line 908: | ||
| | | | ||
| | | | ||
| | |||
| | |||
| | |||
|47\75 | |||
|439.892 | |||
|262.063 | |||
|19 | |||
|9 | |||
|2.111 | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|42\67 | |||
| | |||
|440.031 | |||
|261.924 | |||
|17 | |||
|8 | |||
|2.125 | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
|37\59 | |||
| | |||
| | |||
|440.209 | |||
|261.746 | |||
|15 | |||
|7 | |||
|2.143 | |||
| | |||
|- | |||
| | |||
| | |||
|32\51 | |||
| | |||
| | |||
| | |||
|440.442 | |||
|261.513 | |||
|13 | |||
|6 | |||
|2.167 | |||
| | |||
|- | |||
| | |||
|27\43 | |||
| | |||
| | |||
| | |||
| | |||
|440.762 | |||
|261.193 | |||
|11 | |||
|5 | |||
|2.200 | |||
| | |||
|- | |||
| | |||
|22\35 | |||
| | |||
| | |||
| | |||
| | |||
|441.229 | |||
|260.726 | |||
|9 | |||
|4 | |||
|2.250 | |||
| | |||
|- | |||
| | |||
|17\27 | |||
| | |||
| | |||
| | |||
| | |||
|441.972 | |||
|259.973 | |||
|7 | |||
|3 | |||
|2.333 | |||
| | |||
|- | |||
| | |||
| | |||
|29\46 | |||
| | |||
| | |||
| | |||
|442.537 | |||
|259.418 | |||
|12 | |||
|5 | |||
|2.400 | |||
| | |||
|- | |||
| | | | ||
|12\19 | |12\19 | ||
| | |||
| | |||
| | |||
| | |||
|443.34 | |443.34 | ||
|258.615 | |258.615 | ||
Line 785: | Line 1,024: | ||
|- | |- | ||
| | | | ||
|19\30 | |||
| | |||
| | |||
| | |||
| | |||
|444.5715 | |||
|257.3835 | |||
|8 | |||
|3 | |||
|2.667 | |||
| | |||
|- | |||
| | |||
|26\41 | |||
| | | | ||
| | |||
| | |||
| | |||
|445.142 | |||
|256.813 | |||
|11 | |||
|4 | |||
|2.750 | |||
| | |||
|- | |||
|7\11 | |7\11 | ||
| | |||
| | |||
| | |||
| | |||
| | | | ||
|446.699 | |446.699 | ||
Line 796: | Line 1,063: | ||
|- | |- | ||
| | | | ||
| | |||
|37\58 | |||
| | |||
| | |||
| | |||
|447.799 | |||
|254.156 | |||
|16 | |||
|5 | |||
|3.200 | |||
| | |||
|- | |||
| | |||
|30\47 | |||
| | | | ||
| | | | ||
| | |||
| | |||
|448,056 | |||
|253.899 | |||
|13 | |||
|4 | |||
|3.250 | |||
| | |||
|- | |||
| | |||
|23\36 | |||
| | |||
| | |||
| | |||
| | |||
|448.471 | |||
|253.484 | |||
|10 | |||
|3 | |||
|3.333 | |||
| | |||
|- | |||
| | |||
|16\25 | |||
| | |||
| | |||
| | |||
| | |||
|449.251 | |||
|252.704 | |||
|7 | |||
|2 | |||
|3.500 | |||
| | |||
|- | |||
| | |||
|25\39 | |||
| | |||
| | |||
| | |||
| | |||
|449.971 | |||
|251.984 | |||
|11 | |||
|3 | |||
|3.667 | |||
| | |||
|- | |||
| | |||
|34\53 | |||
| | |||
| | |||
| | |||
| | |||
|450.311 | |||
|251.644 | |||
|15 | |||
|4 | |||
|3.750 | |||
| | |||
|- | |||
|9\14 | |9\14 | ||
| | |||
| | |||
| | |||
| | |||
| | |||
|451.257 | |451.257 | ||
|250.698 | |250.698 | ||
Line 807: | Line 1,154: | ||
|- | |- | ||
|2\3 | |2\3 | ||
| | |||
| | |||
| | | | ||
| | | | ||
Line 815: | Line 1,164: | ||
|0 | |0 | ||
|→ inf | |→ inf | ||
| | |Collapsed | ||
|} | |} | ||
[[Category:Nonoctave]] | [[Category:Nonoctave]] | ||
[[Category:5-tone scales]] |
Latest revision as of 12:02, 27 May 2023
↖ 2L 1s⟨3/2⟩ | ↑ 3L 1s⟨3/2⟩ | 4L 1s⟨3/2⟩ ↗ |
← 2L 2s⟨3/2⟩ | 3L 2s (3/2-equivalent) | 4L 2s⟨3/2⟩ → |
↙ 2L 3s⟨3/2⟩ | ↓ 3L 3s⟨3/2⟩ | 4L 3s⟨3/2⟩ ↘ |
┌╥╥┬╥┬┐ │║║│║││ │││││││ └┴┴┴┴┴┘
sLsLL
3L 2s⟨3/2⟩ (sometimes called uranian), is a fifth-repeating MOS scale. The notation "⟨3/2⟩" means the period of the MOS is 3/2, disambiguating it from octave-repeating 3L 2s. The name of the period interval is called the sesquitave (by analogy to the tritave). It is a warped diatonic scale because it has one extra small step compared to the 3/2-equivalent version of diatonic (3L 1s⟨3/2⟩): for example, the Ionian diatonic fifth LLsL can be distorted to the Oberonan mode LsLLs.
The generator range is 234 to 280.8 cents, placing it in between the diatonic major second and the diatonic minor third, usually representing a subminor third of some type (like 7/6). The bright (chroma-positive) generator is, however, its fifth complement (468 to 421.2 cents).
Because uranian is a fifth-repeating scale, each tone has a 3/2 perfect fifth above it. The scale has three major chords and two minor chords, all voiced so that the third of the triad is an octave higher, a tenth. Uranian also has two harmonic 7th chords.
Basic uranian is in 8edf, which is a very good fifth-based equal tuning similar to 88cET.
Notation
There are 2 main ways to notate the uranian scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 5 naturals (A-E). Given that 1-7/4-5/2 is fifth-equivalent to a tone cluster of 1-10/9-7/6, it may be more convenient to notate uranian scales as repeating at the double sesquitave (major ninth), however it does make navigating the genchain harder. This way, 7/4 is its own pitch class, distinct from 7/6. Notating this way produces a major ninth which is the Aeolian mode of Annapolis[6L 4s]. Since there are exactly 10 naturals in double sesquitave notation, Greek numerals 1-10 may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Uranian | Annapolis | 18edf | 13edf | 21edf | 8edf | 19edf | 11edf | 14edf |
A# | Α# | 1\18
38.9975 |
1\13
53.9965 |
2\21
66.8529 |
1\8
87.7444 |
3\19
110.835 |
2\11
127.6282 |
3\14
150.4189 |
Bb | Βb | 3\18
116.9925 |
2\13
107.9931 |
3\21
100.2793 |
2\19
73.89 |
1\11
63.814 |
1\14
50.1396 | |
B | Β | 4\18
155.99 |
3\13
161.9896 |
5\21
167.1321 |
2\8
175.48875 |
5\19
184.725 |
3\11
191.4423 |
4\14
200.5586 |
B# | Β# | 5\18
194.9875 |
4\13
215.9862 |
7\21
233.985 |
3\8
263.2331 |
8\19
295.56 |
5\11
319.07045 |
7\14
350.9775 |
Cb | Γb | 6\18
233.985 |
6\21
200.5586 |
2\8
175.48875 |
4\19
147.78 |
2\11
127.6282 |
2\14
100.2793 | |
C | Γ | 7\18
272.9825 |
5\13
269.9829 |
8\21
267.4114 |
3\8
263.2331 |
7\19
258.615 |
4\11
255.2564 |
5\14
250.6982 |
C# | Γ# | 8\18
311.98 |
6\13
323.9792 |
10\21
334.2643 |
4\8
350.9775 |
9\19
332.505 |
6\11
382.88455 |
8\14
401.1171 |
Db | Δb | 10\18
389.975 |
7\13
377.9758 |
11\21
367.9607 |
10\19
369.45 |
5\11
319.07045 |
6\14
300.8379 | |
D | Δ | 11\18
428.9725 |
8\13
431.9723 |
13\21
434.5436 |
5\8
438.7219 |
12\19
470.285 |
7\11
446.6986 |
9\14
451.2568 |
D# | Δ# | 12\18
467.97 |
9\13
485.9688 |
15\21
501.3964 |
6\8
526.46625 |
15\19
554.175 |
9\11
574.3268 |
12\14
601.6757 |
Eb | Εb | 14\18
545.965 |
10\13
539.9653 |
16\21
534.8229 |
14\19
516.23 |
8\11
510.5128 |
10\14
501.3964 | |
E | Ε | 15\18
584.9625 |
11\13
593.9619 |
18\21
601.6757 |
7\8
614.2106 |
17\19
628.065 |
10\11
638.1409 |
13\14
651.8154 |
E# | Ε# | 16\18
622.96 |
12\13
646.9585 |
20\21
668.5286 |
8\8
701.955 |
20\19
738.9 |
12\11
765.769 |
16\14
802.2343 |
Ab | Ϛb/Ϝb | 17\18
662.9575 |
19\21
635.1021 |
7\8
614.2106 |
16\19
591.12 |
9\11
574.3268 |
11\14
551.636 | |
A | Ϛ/Ϝ | 701.955 | ||||||
A# | Ϛ#/Ϝ# | 19\18
740.9525 |
14\13
754.9515 |
23\21
768.8021 |
9\8
789.6994 |
22\19
812.79 |
13\11
829.5832 |
17\14
852.3739 |
Bb | Ζb | 21\18
818.9475 |
15\13
809.9481 |
24\21
802.2343 |
21\19
775.845 |
12\11
765.769 |
15\14
752.0946 | |
B | Ζ | 22\18
857.945 |
16\13
862.9446 |
26\21
868.0871 |
10\8
877.44375 |
24\19
886.68 |
14\11
893.3973 |
18\14
902.5136 |
B# | Ζ# | 23\18
896.9425 |
17\13
917.9412 |
28\21
935.9406 |
11\8
965.1881 |
27\19
997.515 |
16\11
1021.02545 |
21\14
1052.9235 |
Cb | Ηb | 24\18
935.94 |
27\21
902.5136 |
10\8
877.44375 |
23\19
849.753 |
13\11
829.5832 |
16\14
802.2343 | |
C | Η | 25\18
974.9375 |
18\13
971.9379 |
29\21
969.3664 |
11\8
965.1881 |
26\19
960.57 |
15\11
957.2114 |
19\14
952.6532 |
C# | Η# | 26\18
1012.935 |
19\13
1025.9342 |
31\21
1036.2193 |
12\8
1052.9235 |
29\19
1071.405 |
17\11
1084.83955 |
22\14
1103.0721 |
Db | Θb | 28\18
1091.93 |
20\13
1079.9308 |
32\21
1069.9157 |
28\19
1034.46 |
16\11
1021.02545 |
20\14
1002.7929 | |
D | Θ | 29\18
1130.9275 |
21\13
1133.9273 |
34\21
1136.4986 |
13\8
1140.7769 |
31\19
1145.295 |
18\11
1148.6536 |
23\14
1153.2118 |
D# | Θ# | 30\18
1169.925 |
22\13
1187.9238 |
36\21
1203.3514 |
14\8
1228.42125 |
34\19
1256.13 |
20\11
1276.2818 |
26\14
1303.6307 |
Eb | Ιb | 32\18
1247.92 |
23\13
1241.9203 |
37\21
1236.7779 |
33\19
1218.285 |
19\11
1212.5678 |
24\14
1203.3514 | |
E | Ι | 33\18
1286.9175 |
24\13
1295.9169 |
39\21
1303.6307 |
15\8
1316.1656 |
36\19
1330.02 |
21\11
1340.0959 |
27\14
1353.8704 |
E# | Ι# | 34\18
1323.915 |
25\13
1348.9135 |
41\21
1370.4836 |
16\8
1403.91 |
39\19
1440.855 |
23\11
1468.724 |
30\14
1504.1892 |
Ab | Αb | 35\18
1364.9125 |
40\21
1337.0571 |
15\8
1316.1656 |
35\19
1293.075 |
20\11
1276.2818 |
25\14
1253.591 | |
A | Α | 1403.91 |
Intervals
Generators | Sesquitave notation | Interval category name | Generators | Notation of 3/2 inverse | Interval category name |
---|---|---|---|---|---|
The 5-note MOS has the following intervals (from some root): | |||||
0 | A | perfect unison | 0 | A | sesquitave (just fifth) |
1 | C | perfect 2-mosstep (min third) | -1 | D | perfect 3-mosstep (maj third) |
2 | Eb | minor 4-mosstep | -2 | B | major 1-mosstep |
3 | Bb | minor 1-mosstep | -3 | E | major 4-mosstep |
4 | Db | diminished 3-mosstep | -4 | C# | augmented 2-mosstep |
The chromatic 8-note MOS also has the following intervals (from some root): | |||||
5 | Ab | diminished sesquitave | -5 | A# | augmented 0-mosstep (chroma) |
6 | Cb | diminished 2-mosstep | -6 | D# | augmented 3-mosstep |
7 | Ebb | diminished 4-mosstep | -7 | B# | augmented 1-mosstep |
Genchain
The generator chain for this scale is as follows:
Bbb | Ebb | Cb | Ab | Db | Bb | Eb | C | A | D | B | E | C# | A# | D# | B# | E# |
d2 | d5 | d3 | d6 | d4 | m2 | m5 | P3 | P1 | P4 | M2 | M5 | A3 | A1 | A4 | A2 | A5 |
Modes
The mode names are based on the major satellites of Uranus, in order of size:
Mode | Scale | UDP | Interval type (mos-) | |||
---|---|---|---|---|---|---|
name | pattern | notation | 2nd | 3rd | 4th | 5th |
Titanian | LLsLs | 4|0 | M | A | P | M |
Oberonan | LsLLs | 3|1 | M | P | P | M |
Umbrielan | LsLsL | 2|2 | M | P | P | m |
Arielan | sLLsL | 1|3 | m | P | P | m |
Mirandan | sLsLL | 0|4 | m | P | d | m |
Temperaments
The most basic rank-2 temperament interpretation of uranian is semiwolf, which has 4:7:10 chords spelled root-(p+1g)-(3p-2g)
(p = 3/2, g = the approximate 7/6). The name "semiwolf" comes from two 7/6 generators approximating a 27/20 wolf fourth. This is further extended to the 11-limit in two interpretations: semilupine where 2 major 2-mossteps (LL) equal 11/9, and hemilycan where 1 major and 2 minor 2-mossteps (sLs) equal 11/9. Basic 8edf fits both extensions.
Semiwolf
Subgroup: 3/2.7/4.5/2
POL2 generator: ~7/6 = 262.1728
Mapping: [⟨1 1 3], ⟨0 1 -2]]
Optimal ET sequence: 8edf, 11edf, 13edf
Semilupine
Subgroup: 3/2.7/4.5/2.11/4
POL2 generator: ~7/6 = 264.3771
Mapping: [⟨1 1 3 4], ⟨0 1 -2 -4]]
Optimal ET sequence: 8edf, 13edf
Hemilycan
Subgroup: 3/2.7/4.5/2.11/4
POL2 generator: ~7/6 = 261.5939
Mapping: [⟨1 1 3 1], ⟨0 1 -2 4]]
Optimal ET sequence: 8edf, 11edf
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | ||||||||||
3\5 | 421.173 | 280.782 | 1 | 1 | 1.000 | Equalised | |||||
11\18 | 428.973 | 272.983 | 4 | 3 | 1.333 | ||||||
30\49 | 429.768 | 272.187 | 11 | 8 | 1.375 | ||||||
19\31 | 430.2305 | 271.7255 | 7 | 5 | 1.400 | ||||||
8\13 | 431.972 | 269.983 | 3 | 2 | 1.500 | Semiwolf and Semilupine start here | |||||
37\60 | 432.872 | 269.083 | 14 | 9 | 1.556 | ||||||
29\47 | 433.121 | 268.834 | 11 | 7 | 1.571 | ||||||
21\34 | 433.56 | 268.395 | 8 | 5 | 1.600 | ||||||
34\55 | 433.935 | 268.02 | 13 | 8 | 1.625 | ||||||
13\21 | 435.084 | 266.871 | 5 | 3 | 1.667 | ||||||
18\29 | 435.696 | 266.259 | 7 | 4 | 1.750 | ||||||
23\37 | 436.35 | 265.605 | 9 | 5 | 1.800 | ||||||
28\45 | 436.772 | 265.183 | 11 | 6 | 1.833 | ||||||
33\53 | 437.066 | 264.889 | 13 | 7 | 1.857 | ||||||
5\8 | 438.722 | 263.233 | 2 | 1 | 2.000 | Semilupine ends, Hemilycan begins | |||||
47\75 | 439.892 | 262.063 | 19 | 9 | 2.111 | ||||||
42\67 | 440.031 | 261.924 | 17 | 8 | 2.125 | ||||||
37\59 | 440.209 | 261.746 | 15 | 7 | 2.143 | ||||||
32\51 | 440.442 | 261.513 | 13 | 6 | 2.167 | ||||||
27\43 | 440.762 | 261.193 | 11 | 5 | 2.200 | ||||||
22\35 | 441.229 | 260.726 | 9 | 4 | 2.250 | ||||||
17\27 | 441.972 | 259.973 | 7 | 3 | 2.333 | ||||||
29\46 | 442.537 | 259.418 | 12 | 5 | 2.400 | ||||||
12\19 | 443.34 | 258.615 | 5 | 2 | 2.500 | ||||||
19\30 | 444.5715 | 257.3835 | 8 | 3 | 2.667 | ||||||
26\41 | 445.142 | 256.813 | 11 | 4 | 2.750 | ||||||
7\11 | 446.699 | 255.256 | 3 | 1 | 3.000 | Semiwolf and Hemilycan end here | |||||
37\58 | 447.799 | 254.156 | 16 | 5 | 3.200 | ||||||
30\47 | 448,056 | 253.899 | 13 | 4 | 3.250 | ||||||
23\36 | 448.471 | 253.484 | 10 | 3 | 3.333 | ||||||
16\25 | 449.251 | 252.704 | 7 | 2 | 3.500 | ||||||
25\39 | 449.971 | 251.984 | 11 | 3 | 3.667 | ||||||
34\53 | 450.311 | 251.644 | 15 | 4 | 3.750 | ||||||
9\14 | 451.257 | 250.698 | 4 | 1 | 4.000 | Near 24edo | |||||
2\3 | 467.97 | 233.985 | 1 | 0 | → inf | Collapsed |