User:Moremajorthanmajor/3L 1s (perfect fifth-equivalent)
3L 1s<perfect fifth> is constructed by repeating the fifth-spanning pattern LLLs of the ordinary diatonic mos (5L 2s) at the equave of 3/2. The so-called "Super Ultra Hyper Mega Meta Lydian" is one mode of this mos.
The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating 3L 1s. The name of the period interval is called the sesquitave (by analogy to the tritave). The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents).
In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords.
Angel is a proposed name for this mos. Basic Angel is in 7edf, which is a very good fifth-based equal tuning similar to 12edo.
Notation
There are 6 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Fa Sol La Si, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate angel scales as repeating at the double, triple, quadruple, quintuple or sextuple sesquitave (major ninth, thirteenth, seventeenth i. e. ~pentave or twenty-first or augmented twenty-fifth), however it does make navigating the genchain harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s], an ~pentave which is the Mixolydian mode of Hextone[12L 4s], a major twenty-first which is the Ionian mode of Guidotonic[15L 5s] or an augmented twenty-fifth which is the Lydian mode of Subdozenal[18L 6s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation, 16 in quadruple sesquitave notation, 20 in quintuple sesquitave notation and 24 in sextuple sesquitave notation, letters A-H (FGABHCDEF), dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle), the Guidonian names with F as the lowest ut or letters except I and O may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Diatonic | Napoli | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
Do#, Fa#, Sol# | F# | 1\15, 46.154 | 1\11, 63.158 | 2\18, 77.419 | 1\7, 100 | 3\17, 124.138 | 2\10, 141.176 | 3\13, 163.636 |
Reb, Solb, Lab | Gb, Ge | 3\15, 138.462 | 2\11. 126.316 | 3\18, 116.129 | 2\17, 82.759 | 1\10, 70.588 | 1\13, 54.545 | |
Re, Sol, La | G | 4\15, 184.615 | 3\11, 189.474 | 5\18, 193.548 | 2\7, 200 | 5\17, 206.897 | 3\10, 211.765 | 4\13, 218.182 |
Re#, Sol#, La# | G# | 5\15, 230.769 | 4\11, 252.632 | 7\18, 270.968 | 3\7, 300 | 8\17, 331.034 | 5\10, 352.941 | 7\13, 381.818 |
Mib, Lab, Sib | Ab, Æ | 7\15, 323.077 | 5\11, 315.789 | 8\18, 309.677 | 7\17, 289.655 | 4\10, 282.353 | 5\13, 272.727 | |
Mi, La, Si | A | 8\15, 369.231 | 6\11, 378.947 | 10\18, 387.097 | 4\7, 400 | 10\17, 413.793 | 6\10, 423.529 | 8\13, 436.364 |
Mi#, La#, Si# | A# | 9\15, 415.385 | 7\11, 442.105 | 12\18, 464.516 | 5\7, 500 | 13\17, 537.069 | 8\10, 564.706 | 11\13, 600 |
Fab, Sibb, Dob | Bbb, Bee | 10\15, 461.538 | 11\18, 425.806 | 4\7, 400 | 9\17, 372.414 | 5\10, 352.941 | 6\13, 327.273 | |
Fa, Sib, Do | Bb, Be | 11\15, 507.692 | 8\11, 505.263 | 13\18, 503.226 | 5\7, 500 | 12\17, 496.552 | 7\10, 494.118 | 9\13, 490.909 |
Fa#, Si, Do# | B | 12\15, 553.846 | 9\11, 568.421 | 15\18, 580.645 | 6\7, 600 | 15\17, 620.690 | 9\10, 635.294 | 12\13, 654.545 |
Fax, Si#, Dox | B# | 13\15, 600 | 10\11, 631.579 | 17\18, 658.064 | 7\7, 700 | 18\17, 744.828 | 11\10, 776.471 | 15\13, 818.182 |
Dob, Fab, Solb | Hb, He | 14\15, 646.154 | 16\18, 619.355 | 6\7, 600 | 14\17, 579.310 | 8\10, 564.706 | 10\13, 545.455 | |
Do, Fa, Sol | H | 15\15, 692.308 | 11\11, 694.737 | 18\18, 696.774 | 7\7, 700 | 17\17, 703.448 | 10\10, 705.882 | 13\13, 709.091 |
Do#, Fa#, Sol# | Η# | 16\15, 738.462 | 12\11, 757.895 | 20\18, 774.194 | 8\8, 800 | 20\17, 827.586 | 12\10, 847.059 | 16\13, 872.727 |
Reb, Solb, Lab | Cb, Ce | 18\15, 830.769 | 13\11, 821.053 | 21\18, 812.903 | 19\17, 786.207 | 11\10, 776.471 | 14\13, 763.63 | |
Re, Sol, La | C | 19\15, 876.923 | 14\11, 884.211 | 23\18, 890.323 | 9\5, 900 | 22\17, 910.345 | 13\10, 917.647 | 17\13, 927.273 |
Re#, Sol#, La# | C# | 20\15, 923.077 | 15\11, 947.368 | 25\18, 967.742 | 10\7, 1000 | 25\17, 1034.483 | 15\10, 1058.824 | 20\13, 1090.909 |
Mib, Lab, Sib | Db, De | 22\15, 1015.385 | 16\11, 1010.526 | 26\18, 1006.452 | 24\17, 993.103 | 14\10, 988.235 | 18\13, 981.818 | |
Mi, La, Si | D | 23\15, 1061.538 | 17\11, 1073.684 | 28\18, 1083.871 | 11\7, 1100 | 27\17, 1117.241 | 16\10, 1129.412 | 21\9, 1145.455 |
Mi#, La#, Si# | D# | 24\15, 1107.923 | 18\11, 1136.842 | 30\18, 1161.29 | 12\7, 1200 | 30\17, 1241.379 | 18\10, 1270.588 | 24\13, 1309.091 |
Fab, Sibb, Dob | Ebb, Eee | 25\15, 1153.846 | 29\18, 1122.581 | 11\7, 1100 | 26\17, 1075.862 | 15\10, 1058.824 | 19\13, 1036.364 | |
Fa, Sib, Do | Eb, Ee | 26\15, 1200 | 19\11, 1200 | 31\18, 1200 | 12\7, 1200 | 29\17, 1200 | 17\10, 1200 | 22\13, 1200 |
Fa#, Si, Do# | E | 27\15, 1246.154 | 20\11, 1263.158 | 33\18, 1277.419 | 13\7, 1300 | 32\17, 1324.138 | 19\10, 1341.176 | 25\13, 1363.636 |
Fax, Si#, Dox | E# | 28\15, 1292.308 | 21\11, 1326.318 | 35\18, 1354.834 | 14\7, 1400 | 35\17, 1448.275 | 21\10, 1482.353 | 28\13, 1527.273 |
Dob, Fab, Solb | Fb, Fe | 29\15, 1338.462 | 34\18, 1316.129 | 13\7, 1300 | 31\17, 1282.759 | 18\10, 1270.588 | 23\13, 1254.545 | |
Do, Fa, Sol | F | 30\15, 1384.615 | 22\11, 1389.473 | 36\18, 1393.548 | 14\7, 1400 | 34\17, 1406.897 | 20\10, 1411.765 | 26\13, 1418.182 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Bijou | Hextone | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
0#, D# | 0#, G# | 1\15, 46.154 | 1\11, 63.158 | 2\18, 77.419 | 1\7, 100 | 3\17, 124.138 | 2\10, 141.176 | 3\13, 163.636 |
1b, 1c | 1f | 3\15, 138.462 | 2\11. 126.316 | 3\18, 116.129 | 2\17, 82.759 | 1\10, 70.588 | 1\13, 54.545 | |
1 | 1 | 4\15, 184.615 | 3\11, 189.474 | 5\18, 193.548 | 2\7, 200 | 5\17, 206.897 | 3\10, 211.765 | 4\13, 218.182 |
1# | 1# | 5\15, 230.769 | 4\11, 252.632 | 7\18, 270.968 | 3\7, 300 | 8\17, 331.034 | 5\10, 352.941 | 7\13, 381.818 |
2b, 2c | 2f | 7\15, 323.077 | 5\11, 315.789 | 8\18, 309.677 | 7\17, 289.655 | 4\10, 282.353 | 5\13, 272.727 | |
2 | 2 | 8\15, 369.231 | 6\11, 378.947 | 10\18, 387.097 | 4\7, 400 | 10\17, 413.793 | 6\10, 423.529 | 8\13, 436.364 |
2# | 2# | 9\15, 415.385 | 7\11, 442.105 | 12\18, 464.516 | 5\7, 500 | 13\17, 537.069 | 8\10, 564.706 | 11\13, 600 |
3b, 3c | 3f | 10\15, 461.538 | 11\18, 425.806 | 4\7, 400 | 9\17, 372.414 | 5\10, 352.941 | 6\13, 327.273 | |
3 | 3 | 11\15, 507.692 | 8\11, 505.263 | 13\18, 503.226 | 5\7, 500 | 12\17, 496.552 | 7\10, 494.118 | 9\13, 490.909 |
3# | 3# | 12\15, 553.846 | 9\11, 568.421 | 15\18, 580.645 | 6\7, 600 | 15\17, 620.690 | 9\10, 635.294 | 12\13, 654.545 |
3x | 3x | 13\15, 600 | 10\11, 631.579 | 17\18, 658.064 | 7\7, 700 | 18\17, 744.828 | 11\10, 776.471 | 15\13, 818.182 |
4b, 4c | 4f | 14\15, 646.154 | 16\18, 619.355 | 6\7, 600 | 14\17, 579.310 | 8\10, 564.706 | 10\13, 545.455 | |
4 | 4 | 15\15, 692.308 | 11\11, 694.737 | 18\18, 696.774 | 7\7, 700 | 17\17, 703.448 | 10\10, 705.882 | 13\13, 709.091 |
4# | 4# | 16\15, 738.462 | 12\11, 757.895 | 20\18, 774.194 | 8\8, 800 | 20\17, 827.586 | 12\10, 847.059 | 16\13, 872.727 |
5b, 5c | 5 | 18\15, 830.769 | 13\11, 821.053 | 21\18, 812.903 | 19\17, 786.207 | 11\10, 776.471 | 14\13, 763.63 | |
5 | 5 | 19\15, 876.923 | 14\11, 884.211 | 23\18, 890.323 | 9\5, 900 | 22\17, 910.345 | 13\10, 917.647 | 17\13, 927.273 |
5# | 5# | 20\15, 923.077 | 15\11, 947.368 | 25\18, 967.742 | 10\7, 1000 | 25\17, 1034.483 | 15\10, 1058.824 | 20\13, 1090.909 |
6b, 6c | 6f | 22\15, 1015.385 | 16\11, 1010.526 | 26\18, 1006.452 | 24\17, 993.103 | 14\10, 988.235 | 18\13, 981.818 | |
6 | 6 | 23\15, 1061.538 | 17\11, 1073.684 | 28\18, 1083.871 | 11\7, 1100 | 27\17, 1117.241 | 16\10, 1129.412 | 21\9, 1145.455 |
6# | 6# | 24\15, 1107.923 | 18\11, 1136.842 | 30\18, 1161.290 | 12\7, 1200 | 30\17, 1241.379 | 18\10, 1270.588 | 24\13, 1309.091 |
7b, 7c | 7f | 25\15, 1153.846 | 29\18, 1122.581 | 11\7, 1100 | 26\17, 1075.862 | 15\10, 1058.824 | 19\13, 1036.364 | |
7 | 7 | 26\15, 1200 | 19\11, 1200 | 31\18, 1200 | 12\7, 1200 | 29\17, 1200 | 17\10, 1200 | 22\13, 1200 |
7# | 7# | 27\15, 1246.154 | 20\11, 1263.158 | 33\18, 1277.419 | 13\7, 1300 | 32\17, 1324.138 | 19\10, 1341.176 | 25\13, 1363.636 |
7x | 7x | 28\15, 1292.308 | 21\11, 1326.318 | 35\18, 1354.834 | 14\7, 1400 | 35\17, 1448.275 | 21\10, 1482.353 | 28\13, 1527.273 |
8b, Fc | 8f | 29\15, 1338.462 | 34\18, 1316.129 | 13\7, 1300 | 31\17, 1282.759 | 18\10, 1270.588 | 23\13, 1254.545 | |
8, F | 8 | 30\15, 1384.615 | 22\11, 1389.473 | 36\18, 1393.548 | 14\7, 1400 | 34\17, 1406.897 | 20\10, 1411.765 | 26\13, 1418.182 |
8#, F# | 8# | 31\15, 1430.769 | 23\11, 1452.632 | 38\18, 1470.968 | 15\7, 1500 | 37\17, 1531.034 | 22\10, 1552.941 | 29\13, 1581.818 |
9b, Gc | 9f | 33\15, 1523.077 | 24\11, 1515.789 | 39\18, 1509.677 | 36\17, 1489.655 | 21\10, 1482.759 | 27\13, 1472.273 | |
9, G | 9 | 34\15, 1569.231 | 25\11, 1578.947 | 41\18, 1587.097 | 16\7, 1600 | 39\17, 1613.793 | 23\10, 1623.529 | 30\13, 1636.364 |
9#, G# | 9# | 35\15, 1615.385 | 26\11, 1642.105 | 43\18, 1664.516 | 17\7, 1700 | 42\17, 1737.069 | 25\10, 1764.706 | 33\13, 1800 |
Xb, Ac | Af | 37\15, 1707.692 | 27\11, 1705.263 | 44\18, 1703.226 | 41\17, 1696.552 | 24\10, 1694.118 | 31\13, 1690.909 | |
X, A | A | 38\15, 1753.846 | 28\11, 1768.421 | 46\18, 1780.645 | 18\7, 1800 | 44\17, 1820.690 | 26\10, 1835.294 | 34\13, 1854.545 |
X#, A# | A# | 39\15, 1800 | 29\11, 1831.579 | 48\18, 1858.064 | 19\7, 1900 | 47\17, 1944.828 | 28\10, 1976.471 | 37\13, 2018.182 |
Ebb, Ccc | Ax | 40\15, 1846.154 | 47\18, 1819.355 | 18\7, 1800 | 43\17, 1779.310 | 25\10, 1764.706 | 32\13, 1745.545 | |
Eb, Cc | Bf | 41\15, 1892.308 | 30\11, 1894.737 | 49\18, 1896.774 | 19\7, 1900 | 46\17, 1903.448 | 27\10, 1905.882 | 35\13, 1909.091 |
E, C | B | 42\15, 1938.462 | 31\11, 1957.895 | 51\18, 1974.194 | 20\7, 2000 | 49\17, 2027.586 | 29\10, 2047.059 | 38\13, 2072.727 |
Ex, Cx | B# | 43\15, 1984.615 | 32\11, 2021.053 | 53\18, 2051.612 | 21\7, 2100 | 52\17, 2151.725 | 31\10, 2188.235 | 41\13, 2236.364 |
0b, Dc | Cf | 44\15, 2030.769 | 52\18, 2012.903 | 20\7, 2000 | 48\17, 1986.207 | 28\10, 1976.471 | 36\13, 1963.636 | |
0, D | C | 45\15, 2076.923 | 33\11, 2084.211 | 54\18, 2090.323 | 21\7, 2100 | 51\17, 2110.345 | 30\10, 2117.647 | 39\13, 2127.273 |
0#, D# | C# | 46\15, 2123.077 | 34\11, 2147.368 | 56\15, 2167.742 | 22\7, 2200 | 54\17, 2234.483 | 32\10, 2258.824 | 42\13, 2090.909 |
1b, 1c | Df | 48\15, 2215.385 | 35\11, 2210.526 | 57\15, 2206.452 | 53\17, 2193.103 | 31\10, 2188.235 | 40\13, 2181.818 | |
1 | D | 49\15, 2261.538 | 36\11, 1073.684 | 59\18, 2283.871 | 23\7, 2300 | 56\17, 2317.241 | 33\10, 2329.412 | 43\13, 2345.455 |
1# | D# | 50\15, 2307.692 | 37\11, 2336.842 | 61\18, 2361.290 | 24\7, 2400 | 59\17, 2441.379 | 35\10, 2470.588 | 46\13, 2509.091 |
2b, 2c | Ef | 52\15, 2400 | 38\11, 2400 | 62\18, 2400 | 58\17, 2400 | 34\10, 2400 | 44\13, 2400 | |
2 | E | 53\15, 2446.154 | 39\11, 2463.158 | 64\18, 2477,419 | 25\7, 2500 | 61\17, 2524.138 | 36\10, 2541.176 | 47\13, 2563.636 |
2# | E# | 54\15, 2492.308 | 40\11, 2526.316 | 66\18, 2554.838 | 26\7, 2600 | 64\17, 2648.275 | 38\10, 2682.353 | 50\13, 2727.273 |
3b, 3c | Fff | 55\15, 2538.462 | 65\18, 2516.129 | 25\7, 2500 | 60\17, 2482.759 | 35\10, 2470.588 | 45\13, 2454.545 | |
3 | Ff | 56\15, 2584.615 | 41\11, 2589.474 | 67\18, 2593.548 | 26\7, 2600 | 63\17, 2606.897 | 37\10, 2611.765 | 48\13, 2618.182 |
3# | F | 57\15, 2630.769 | 42\11, 2652.632 | 69\18, 2670.968 | 27\7, 2700 | 66\17, 2731.034 | 39\10, 2752.941 | 51\13, 2781.818 |
3x | F# | 58\15, 2676.923 | 43\11, 2715.789 | 71\18, 2748.387 | 28\7, 2800 | 69\17, 2855.172 | 41\10, 2894.118 | 54\13, 2945.455 |
4bb, 4cc | 0ff, Gff | 42\11, 2652.632 | 68\18, 2632.258 | 26\7, 2600 | 62\17, 2565.517 | 36\10, 2541.176 | 46\13, 2509.091 | |
4b, 4c | 0f, Gf | 59\15, 2723.077 | 43\11, 2715.789 | 70\18, 2709.677 | 27\7, 2700 | 65\17, 2689.552 | 38\10, 2682.353 | 49\13, 2672.273 |
4 | 0, G | 60\15, 2769.231 | 44\11, 2778.947 | 72\18, 2787.097 | 28\7, 2800 | 68\17, 2813.793 | 40\10, 2823.529 | 52\13, 2836.364 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Guidotonic | Subdozenal | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
F ut# | F# | 1\15, 46.154 | 1\11, 63.158 | 2\18, 77.419 | 1\7, 100 | 3\17, 124.138 | 2\10, 141.176 | 3\13, 163.636 |
G reb | Gb, Ge | 3\15, 138.462 | 2\11. 126.316 | 3\18, 116.129 | 2\17, 82.759 | 1\10, 70.588 | 1\13, 54.545 | |
G re | G | 4\15, 184.615 | 3\11, 189.474 | 5\18, 193.548 | 2\7, 200 | 5\17, 206.897 | 3\10, 211.765 | 4\13, 218.182 |
G re# | G# | 5\15, 230.769 | 4\11, 252.632 | 7\18, 270.968 | 3\7, 300 | 8\17, 331.034 | 5\10, 352.941 | 7\13, 381.818 |
A mib | Hb, He | 7\15, 323.077 | 5\11, 315.789 | 8\18, 309.677 | 7\17, 289.655 | 4\10, 282.353 | 5\13, 272.727 | |
A mi | H | 8\15, 369.231 | 6\11, 378.947 | 10\18, 387.097 | 4\7, 400 | 10\17, 413.793 | 6\10, 423.529 | 8\13, 436.364 |
A mi# | H# | 9\15, 415.385 | 7\11, 442.105 | 12\18, 464.516 | 5\7, 500 | 13\17, 537.069 | 8\10, 564.706 | 11\13, 600 |
B fa utb | Jbb, Jee | 10\15, 461.538 | 11\18, 425.806 | 4\7, 400 | 9\17, 372.414 | 5\10, 352.941 | 6\13, 327.273 | |
B fa ut | Jb, Je | 11\15, 507.692 | 8\11, 505.263 | 13\18, 503.226 | 5\7, 500 | 12\17, 496.552 | 7\10, 494.118 | 9\13, 490.909 |
B fa ut# | J | 12\15, 553.846 | 9\11, 568.421 | 15\18, 580.645 | 6\7, 600 | 15\17, 620.690 | 9\10, 635.294 | 12\13, 654.545 |
B fa utx | J# | 13\15, 600 | 10\11, 631.579 | 17\18, 658.064 | 7\7, 700 | 18\17, 744.828 | 11\10, 776.471 | 15\13, 818.182 |
C sol re utb | Kb, Ke | 14\15, 646.154 | 16\18, 619.355 | 6\7, 600 | 14\17, 579.310 | 8\10, 564.706 | 10\13, 545.455 | |
C sol re ut | K | 15\15, 692.308 | 11\11, 694.737 | 18\18, 696.774 | 7\7, 700 | 17\17, 703.448 | 10\10, 705.882 | 13\13, 709.091 |
C sol re ut# | K# | 16\15, 738.462 | 12\11, 757.895 | 20\18, 774.194 | 8\8, 800 | 20\17, 827.586 | 12\10, 847.059 | 16\13, 872.727 |
D la mi reb | Lb, Le | 18\15, 830.769 | 13\11, 821.053 | 21\18, 812.903 | 19\17, 786.207 | 11\10, 776.471 | 14\13, 763.63 | |
D la mi re | L | 19\15, 876.923 | 14\11, 884.211 | 23\18, 890.323 | 9\5, 900 | 22\17, 910.345 | 13\10, 917.647 | 17\13, 927.273 |
D la mi re# | L# | 20\15, 923.077 | 15\11, 947.368 | 25\18, 967.742 | 10\7, 1000 | 25\17, 1034.483 | 15\10, 1058.824 | 20\13, 1090.909 |
E fab | Mbb, Mee | 21\15, 969.231 | 24\18, 929.032 | 9\5, 900 | 21\17, 868.966 | 12\10, 847.059 | 15\13, 818.182 | |
E fa | Mb, Me | 22\15, 1015.385 | 16\11, 1010.526 | 26\18, 1006.452 | 10\7, 1000 | 24\17, 993.103 | 14\10, 988.235 | 18\13, 981.818 |
E sí mi | M | 23\15, 1061.538 | 17\11, 1073.684 | 28\18, 1083.871 | 11\7, 1100 | 27\17, 1117.241 | 16\10, 1129.412 | 21\9, 1145.455 |
E si mi# | M# | 24\15, 1107.923 | 18\11, 1136.842 | 30\18, 1161.29 | 12\7, 1200 | 30\17, 1241.379 | 18\10, 1270.588 | 24\13, 1309.091 |
F sol fa utb | Nbb, Nee | 25\15, 1153.846 | 29\18, 1122.581 | 11\7, 1100 | 26\17, 1075.862 | 15\10, 1058.824 | 19\13, 1036.364 | |
F sol fa ut | Nb, Ne | 26\15, 1200 | 19\11, 1200 | 31\18, 1200 | 12\7, 1200 | 29\17, 1200 | 17\10, 1200 | 22\13, 1200 |
F sol fa ut# | N | 27\15, 1246.154 | 20\11, 1263.158 | 33\18, 1277.419 | 13\7, 1300 | 32\17, 1324.138 | 19\10, 1341.176 | 25\13, 1363.636 |
F sol fa utx | N# | 28\15, 1292.308 | 21\11, 1326.318 | 35\18, 1354.834 | 14\7, 1400 | 35\17, 1448.275 | 21\10, 1482.353 | 28\13, 1527.273 |
G la sol reb | Pb, Pe | 29\15, 1338.462 | 34\18, 1316.129 | 13\7, 1300 | 31\17, 1282.759 | 18\10, 1270.588 | 23\13, 1254.545 | |
G la sol re | P | 30\15, 1384.615 | 22\11, 1389.473 | 36\18, 1393.548 | 14\7, 1400 | 34\17, 1406.897 | 20\10, 1411.765 | 26\13, 1418.182 |
G la sol re# | P# | 31\15, 1430.769 | 23\11, 1452.632 | 38\18, 1470.968 | 15\7, 1500 | 37\17, 1531.034 | 22\10, 1552.941 | 29\13, 1581.818 |
A si la mib | Qb, Qe | 33\15, 1523.077 | 24\11, 1515.789 | 39\18, 1509.677 | 36\17, 1489.655 | 21\10, 1482.759 | 27\13, 1472.273 | |
A si la mi | Q | 34\15, 1569.231 | 25\11, 1578.947 | 41\18, 1587.097 | 16\7, 1600 | 39\17, 1613.793 | 23\10, 1623.529 | 30\13, 1636.364 |
A si la mi# | Q# | 35\15, 1615.385 | 26\11, 1642.105 | 43\18, 1664.516 | 17\7, 1700 | 42\17, 1737.069 | 25\10, 1764.706 | 33\13, 1800 |
B fa utb | Rb, Re | 36\61, 1661.538 | 42\18, 1625.806 | 16\7, 1600 | 38\29, 1572.414 | 22\10, 1552.941 | 28\13, 1527.273 | |
B fa ut | R | 37\15, 1707.692 | 27\11, 1705.263 | 44\18, 1703.226 | 17\7, 1700 | 41\17, 1696.552 | 24\10, 1694.118 | 31\13, 1690.909 |
B si | R# | 38\15, 1753.846 | 28\11, 1768.421 | 46\18, 1780.645 | 18\7, 1800 | 44\17, 1820.690 | 26\10, 1835.294 | 34\13, 1854.545 |
B si | R# | 39\15, 1800 | 29\11, 1831.579 | 48\18, 1858.064 | 19\7, 1900 | 47\17, 1944.828 | 28\10, 1976.471 | 37\13, 2018.182 |
C sol re utb | Sb, Se | 40\15, 1846.154 | 47\18, 1819.355 | 18\7, 1800 | 43\17, 1779.310 | 25\10, 1764.706 | 32\13, 1745.545 | |
C sol re ut | S | 41\15, 1892.308 | 30\11, 1894.737 | 49\18, 1896.774 | 19\7, 1900 | 46\17, 1903.448 | 27\10, 1905.882 | 35\13, 1909.091 |
C sol re ut# | S# | 42\15, 1938.462 | 31\11, 1957.895 | 51\18, 1974.194 | 20\7, 2000 | 49\17, 2027.586 | 29\10, 2047.059 | 38\13, 2072.727 |
C sol re utx | Sx | 43\15, 1984.615 | 32\11, 2021.053 | 53\18, 2051.612 | 21\7, 2100 | 52\17, 2151.725 | 31\10, 2188.235 | 41\13, 2236.364 |
D la mi reb | Tb, Te | 44\15, 2030.769 | 52\18, 2012.903 | 20\7, 2000 | 48\17, 1986.207 | 28\10, 1976.471 | 36\13, 1963.636 | |
D la mi re | T | 45\15, 2076.923 | 33\11, 2084.211 | 54\18, 2090.323 | 21\7, 2100 | 51\17, 2110.345 | 30\10, 2117.647 | 39\13, 2127.273 |
D la mi re# | T# | 46\15, 2123.077 | 34\11, 2147.368 | 56\18, 2167.742 | 22\7, 2200 | 54\17, 2234.483 | 32\10, 2258.824 | 42\13, 2090.909 |
E fab | Ub, Üe | 47\26, 2169.231 | 55\16, 2129.032 | 21\7, 2100 | 50\17, 2068.966 | 29\10, 2047.059 | 37\13, 2018.182 | |
E fa | Ub, Ü | 48\15, 2215.385 | 35\11, 2210.526 | 57\18, 2206.452 | 23\7, 2300 | 53\17, 2193.103 | 31\10, 2188.235 | 40\13, 2181.818 |
E si mi | U | 49\15, 2261.538 | 36\11, 1073.684 | 59\18, 2283.871 | 24\7, 2400 | 56\17, 2317.241 | 33\10, 2329.412 | 43\13, 2345.455 |
E si mi# | U# | 50\15, 2307.692 | 37\11, 2336.842 | 61\18, 2361.290 | 23\7, 2300 | 59\17, 2441.379 | 35\10, 2470.588 | 46\13, 2509.091 |
F sol fa utb | Vb, Ve | 51\15, 2353.846 | 60\18, 2322.581 | 55\17, 2275.862 | 32\10, 2258.824 | 41\13, 2236.364 | ||
F sol fa ut | V | 52\15, 2400 | 38\11, 2400 | 62\18, 2400 | 24\7, 2400 | 58\17, 2400 | 34\10, 2400 | 44\13, 2400 |
F sol fa ut# | V# | 53\15, 2446.154 | 39\11, 2463.158 | 64\18, 2477,419 | 25\7, 2500 | 61\17, 2524.138 | 36\10, 2541.176 | 47\13, 2563.636 |
G la sol reb | Wb, We | 55\15, 2538.462 | 40\11, 2526.316 | 65\18, 2516.129 | 60\17, 2482.759 | 35\10, 2470.588 | 45\13, 2454.545 | |
G la sol re | Wb | 56\15, 2584.615 | 41\11, 2589.474 | 67\18, 2593.548 | 26\7, 2600 | 63\17, 2606.897 | 37\10, 2611.765 | 48\13, 2618.182 |
G la sol re# | W# | 57\15, 2630.769 | 42\11, 2652.632 | 69\18, 2670.968 | 27\7, 2700 | 66\17, 2731.034 | 39\10, 2752.941 | 51\13, 2781.818 |
A si la mib | Xb, Xe | 59\15, 2723.077 | 43\11, 2715.789 | 70\18, 2709.677 | 65\17, 2689.552 | 38\10, 2682.353 | 49\13, 2672.273 | |
A si la mi | X | 60\15, 2769.231 | 44\11, 2778.947 | 72\18, 2787.097 | 28\7, 2800 | 68\17, 2813.793 | 40\10, 2823.529 | 52\13, 2836.364 |
A si la mi# | X# | 61\15, 2815.385 | 45\11, 2842.105 | 74\18, 2864.516 | 29\7, 2900 | 71\17, 2937.069 | 42\10, 2964.706 | 55\13, 3000 |
B fab | Ybb, Yee | 62\15, 2861.538 | 73\18, 2825.806 | 28\7, 2800 | 67\17, 2772.414 | 39\10, 2752.941 | 50\13, 2727.273 | |
B fa | Yb, Ye | 63\15, 2907.692 | 46\11, 2905.263 | 75\18, 2903.226 | 29\7, 2900 | 70\17, 2896.552 | 41\10, 2894.118 | 53\13, 2890.909 |
B si | Y | 64\15, 2953.846 | 47\11, 2968.421 | 77\18, 2980.645 | 30\7, 3000 | 73\17, 3020.690 | 43\10, 3035.294 | 56\13, 3054.545 |
B si# | Y# | 65\15, 3000 | 48\11, 3031.579 | 79\18, 3058.064 | 31\7, 3100 | 76\17, 3144.828 | 45\10, 3176.471 | 59\13, 3218.182 |
C solb | Zb. Ze | 67\15, 3092.308 | 49\11, 3094.737 | 80\18, 3096.774 | 75\17, 3103.448 | 44\10, 3105.882 | 57\13, 3109.091 | |
C sol | Z | 68\15, 3138.462 | 50\11, 3157.895 | 82\18, 3174.194 | 32\7, 3200 | 78\17, 3227.586 | 46\10, 3247.059 | 60\13, 3272.273 |
C sol# | Z# | 69\15, 3184.615 | 51\11, 3221.053 | 84\18, 3251.612 | 33\7, 3300 | 81\17, 3351.725 | 48\10, 3388.235 | 63\13, 3436.364 |
D labb | Ab, Æ | 70\15, 3230.769 | 83\18, 3212.903 | 32\7, 3200 | 77\17, 3186.207 | 45\10, 3176.471 | 58\13, 3163.636 | |
D lab | A | 71\15, 3276.923 | 52\11, 3284.211 | 85\18, 3290.323 | 33\7, 3300 | 80\17, 3310.345 | 47\10, 3317.647 | 61\13, 3327.27 |
D la | A# | 72\15, 3323.077 | 53\11, 3347.368 | 87\18, 3367.742 | 34\7, 3400 | 83\17, 3434.583 | 49\10, 3458.824 | 64\13, 3490.909 |
D la# | Ax | 73\15, 3369.231 | 54\11, 3410.625 | 89\18, 3445.162 | 35\7, 3500 | 86\17, 3558.621 | 51\10, 3600 | 67\13, 3654.545 |
F utb | Bb, Be | 74\15, 3415.385 | 88\18, 3406.452 | 34\7, 3400 | 82\17, 3393.103 | 48\10, 3388.235 | 62\13, 3381.818 | |
F ut | B | 75\15, 3461.538 | 55\11, 3473.684 | 90\18, 3483.871 | 35\7, 3500 | 85\17, 3517.241 | 50\10, 3529.412 | 65\13, 3545.455 |
F ut# | B# | 76\15, 3507.692 | 56\11, 3536.842 | 92\18, 3561.290 | 36\7, 3600 | 88\17, 3641.379 | 52\10, 3670.588 | 68\13, 3709.091 |
G reb | Cb, Ce | 78\15, 3600 | 57\11, 3600 | 93\18, 3600 | 87\17, 3600 | 51\10, 3600 | 66\13, 3600 | |
G re | C | 79\15, 3646.154 | 58\11, 3663.158 | 95\18, 3677.419 | 37\7, 3700 | 90\17, 3724.138 | 53\10, 3741.176 | 69\13, 3763.636 |
G re# | C# | 80\15, 3692.308 | 59\11, 3726.316 | 97\18, 3755.838 | 38\7, 3800 | 93\17, 3848.275 | 55\10, 3882.353 | 72\13, 3927.273 |
A mib | Db, De | 82\15, 3784.615 | 60\11, 3789.474 | 98\18, 3793.548 | 92\17, 3806.897 | 54\10, 3811.765 | 70\13, 3818.182 | |
A mi | D | 83\15, 3830.769 | 61\11, 3852.632 | 100\18, 3870.968 | 39\7, 3900 | 95\17, 3931.03$ | 56\10, 3952.941 | 73\13, 3981.818 |
A mi# | D# | 84\15, 3876.923 | 62\11, 3915.789 | 102\18, 3948.387 | 40\7, 4000 | 98\17, 4055.172 | 58\10, 4094.118 | 76\13, 4145.455 |
B fa utb | Ebb, Eee | 85\15, 3923.077 | 101\18, 3909.677 | 39\7, 3900 | 94\17, 3889.552 | 55\10, 3882.353 | 71\13, 3872.727 | |
B fa ut | Eb, Ee | 86\15, 3969.231 | 63\11, 3978.947 | 103\18, 3987.097 | 40\7, 4000 | 97\17, 4013.793 | 57\10, 4023.529 | 74\13, 4036.364 |
B fa ut# | E | 87\15, 4015.385 | 64\11, 4042.105 | 105\18, 4064.516 | 41\7, 4100 | 100\17, 4137.931 | 59\10, 4164.706 | 77\13, 4200 |
B fa utx | E# | 88\15, 4061.583 | 65\11, 4105.263 | 107\18, 4141.956 | 42\7, 4200 | 103\17, 4262.069 | 61\10, 4305.882 | 80\13, 4363.636 |
C sol reb | Fb, Fe | 89\15, 4107.692 | 106\18, 4103.226 | 41\7, 4100 | 99\17, 4096.552 | 58\10, 4094.118 | 75\13, 4090.909 | |
C sol re | F | 90\15, 4153.846 | 66\11, 4168.421 | 108\18, 4180.645 | 42\7, 4200 | 102\17, 4220.690 | 60\10, 4235.294 | 78\13, 4254.545 |
Intervals
Generators | Sesquitave notation | Interval category name | Generators | Notation of 3/2 inverse | Interval category name |
---|---|---|---|---|---|
The 4-note MOS has the following intervals (from some root): | |||||
0 | Do, Fa, Sol | perfect unison | 0 | Do, Fa, Sol | sesquitave (just fifth) |
1 | Fa, Sib, Do | perfect fourth | -1 | Re, Sol, La | perfect second |
2 | Mib, Lab, Sib | minor third | -2 | Mi, La, Si | major third |
3 | Reb, Solb, Lab | diminished second | -3 | Fa#, Si, Do# | augmented fourth |
The chromatic 7-note MOS also has the following intervals (from some root): | |||||
4 | Dob, Fab, Solb | diminished sesquitave | -4 | Do#, Fa#, Sol# | augmented unison (chroma) |
5 | Fab, Sibb, Dob | diminished fourth | -5 | Re#, Sol#, La# | augmented second |
6 | Mibb, Labb, Sibb | diminished third | -6 | Mi#, La#, Si# | augmented third |
Genchain
The generator chain for this scale is as follows:
Mibb
Labb Sibb |
Fab
Sibb Dob |
Dob
Fab Solb |
Reb
Solb Lab |
Mib
Lab Sib |
Fa
Sib Do |
Do
Fa Sol |
Re
Sol La |
Mi
La Si |
Fa#
Si Do# |
Do#
Fa# Sol# |
Re#
Sol# La# |
Mi#
La# Si# |
d3 | d4 | d5 | d2 | m3 | P4 | P1 | P2 | M3 | A4 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fifth:
Mode | Scale | UDP | Interval type | ||
---|---|---|---|---|---|
name | pattern | notation | 2nd | 3rd | 4th |
Lydian | LLLs | 3|0 | P | M | A |
Major | LLsL | 2|1 | P | M | P |
Minor | LsLL | 1|2 | P | m | P |
Phrygian | sLLL | 0|3 | d | m | P |
Temperaments
The most basic rank-2 temperament interpretation of angel is Napoli. The name "Napoli" comes from the “Neapolitan” sixth triad spelled root-(p-2g)-(2p-3g)
(p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations.
Napoli-Meantone
Subgroup: 3/2.6/5.8/5
POL2 generator: ~9/8 = 192.6406¢
Mapping: [⟨1 1 2], ⟨0 -2 -3]]
Optimal ET sequence: ~(7edf, 11edf, 18edf)
Napoli-Archy
Subgroup: 3/2.7/6.14/9
POL2 generator: ~8/7 = 218.6371¢
Mapping: [⟨1 1 2], ⟨0 -2 -3]]
Optimal ET sequence: ~(7edf, 10edf, 13edf, 16edf)
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments |
---|---|---|---|---|---|
1\4 | 171.429 | 1 | 1 | 1.000 | Equalised |
6\23 | 180.000 | 6 | 5 | 1.200 | |
5\19 | 181.818 | 5 | 4 | 1.250 | |
14\53 | 182.609 | 14 | 11 | 1.273 | |
9\34 | 183.051 | 9 | 7 | 1.286 | |
4\15 | 184.615 | 4 | 3 | 1.333 | |
11\41 | 185.915 | 11 | 8 | 1.375 | |
7\26 | 186.667 | 7 | 5 | 1.400 | |
10\37 | 187.5 | 10 | 7 | 1.429 | |
13\48 | 187.952 | 13 | 9 | 1.444 | |
16\59 | 188.253 | 16 | 11 | 1.455 | |
3\11 | 189.474 | 3 | 2 | 1.500 | Napoli-Meantone starts here |
14\51 | 190.909 | 14 | 9 | 1.556 | |
11\40 | 191.304 | 11 | 7 | 1.571 | |
8\29 | 192.000 | 8 | 5 | 1.600 | |
5\18 | 193.548 | 5 | 3 | 1.667 | |
12\43 | 194.595 | 12 | 7 | 1.714 | |
7\25 | 195.348 | 7 | 4 | 1.750 | |
9\32 | 196.364 | 9 | 5 | 1.800 | |
11\39 | 197.015 | 11 | 6 | 1.833 | |
13\46 | 197.468 | 13 | 7 | 1.857 | |
15\53 | 197.802 | 15 | 8 | 1.875 | |
17\60 | 198.058 | 17 | 9 | 1.889 | |
19\67 | 198.261 | 19 | 10 | 1.900 | |
21\74 | 198.425 | 21 | 11 | 1.909 | |
23\81 | 198.561 | 23 | 12 | 1.917 | |
25\88 | 198.675 | 25 | 13 | 1.923 | |
27\95 | 198.773 | 27 | 14 | 1.929 | |
29\102 | 198.857 | 29 | 15 | 1.933 | |
31\109 | 198.930 | 31 | 16 | 1.9375 | |
33\116 | 198.995 | 33 | 17 | 1.941 | |
35\123 | 199.009 | 35 | 18 | 1.944 | |
2\7 | 200 | 2 | 1 | 2.000 | Napoli-Meantone ends, Napoli-Pythagorean begins |
17\59 | 201.980 | 17 | 8 | 2.125 | |
15\52 | 202.247 | 15 | 7 | 2.143 | |
13\45 | 202.597 | 13 | 6 | 2.167 | |
11\38 | 203.077 | 11 | 5 | 2.200 | |
9\31 | 203.774 | 9 | 4 | 2.250 | |
7\24 | 204.878 | 7 | 3 | 2.333 | |
12\41 | 205.714 | 12 | 5 | 2.400 | |
5\17 | 206.897 | 5 | 2 | 2.500 | Napoli-Neogothic heartland is from here… |
18\61 | 207.693 | 18 | 7 | 2.571 | |
13\44 | 208.000 | 13 | 5 | 2.600 | |
8\27 | 208.696 | 8 | 3 | 2.667 | …to here |
11\37 | 209.524 | 11 | 4 | 2.750 | |
14\47 | 210.000 | 14 | 5 | 2.800 | |
3\10 | 211.765 | 3 | 1 | 3.000 | Napoli-Pythagorean ends, Napoli-Archy begins |
22\73 | 212.903 | 22 | 7 | 3.143 | |
19\63 | 213.084 | 19 | 6 | 3.167 | |
16\53 | 213.333 | 16 | 5 | 3.200 | |
13\43 | 213.699 | 13 | 4 | 3.250 | |
10\33 | 214.286 | 10 | 3 | 3.333 | |
7\23 | 215.385 | 7 | 2 | 3.500 | |
11\36 | 216.393 | 11 | 3 | 3.667 | |
15\49 | 216.867 | 15 | 4 | 3.750 | |
19\62 | 217.143 | 19 | 5 | 3.800 | |
4\13 | 218.182 | 4 | 1 | 4.000 | |
13\42 | 219.718 | 13 | 3 | 4.333 | |
9\29 | 220.408 | 9 | 2 | 4.500 | |
14\45 | 221.053 | 14 | 3 | 4.667 | |
5\16 | 222.222 | 5 | 1 | 5.000 | Napoli-Archy ends |
11\35 | 223.728 | 11 | 2 | 5.500 | |
17\54 | 224.176 | 17 | 3 | 5.667 | |
6\19 | 225.000 | 6 | 1 | 6.000 | |
1\3 | 240.000 | 1 | 0 | → inf | Paucitonic |
See also
3L 1s (3/2-equivalent) - idealized tuning
6L 2s (20/9-equivalent) - Neapolitan 1/2-comma meantone
6L 2s (88/39-equivalent) - Neapolitan gentle temperament
6L 2s (16/7-equivalent) - Neapolitan 1/2-comma archy
9L 3s (10/3-equivalent) - Bijou 1/3-comma meantone
9L 3s (44/13-equivalent) - Bijou gentle temperament
9L 3s (24/7-equivalent) - Bijou 1/3-comma archy
12L 4s (5/1-equivalent) - Hex meantone
12L 4s (56/11-equivalent) - Hextone gentle temperament
12L 4s (36/7-equivalent) - Hextone 1/4-comma archy
15L 5s (15/2-equivalent) - Guidotonic major 1/5-comma meantone
15L 5s (84/11-equivalent) - Guidotonic major gentle temperament
15L 5s (54/7-equivalent) - Guidotonic major 1/5-comma archy
18L 6s (11/1-equivalent) - Subdozenal harmonic tuning
18L 6s (56/5-equivalent) - Subdozenal low septimal (meantone) tuning
18L 6s (512/45-equivalent) - Subdozenal 1/6-comma meantone
18L 6s (80/7-equivalent) - Subdozenal high septimal tuning
18L 6s (128/11-equivalent) - Subdozenal subharmonic tuning
18L 6s (12/1-equivalent) - Warped Pythagorean tuning