This page lists all moment of symmetry scales in 19edo.
Single-period MOS scales
Generators 10\19 and 9\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼────────┤
|
1L 1s
|
10, 9
|
10:9
|
├┼────────┼────────┤
|
2L 1s
|
9, 1
|
9:1
|
├┼┼───────┼┼───────┤
|
2L 3s
|
8, 1
|
8:1
|
├┼┼┼──────┼┼┼──────┤
|
2L 5s (antidiatonic)
|
7, 1
|
7:1
|
├┼┼┼┼─────┼┼┼┼─────┤
|
2L 7s (balzano)
|
6, 1
|
6:1
|
├┼┼┼┼┼────┼┼┼┼┼────┤
|
2L 9s
|
5, 1
|
5:1
|
├┼┼┼┼┼┼───┼┼┼┼┼┼───┤
|
2L 11s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼┼──┼┼┼┼┼┼┼──┤
|
2L 13s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼─┤
|
2L 15s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 11\19 and 8\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼───────┤
|
1L 1s
|
11, 8
|
11:8
|
├──┼───────┼───────┤
|
2L 1s
|
8, 3
|
8:3
|
├──┼──┼────┼──┼────┤
|
2L 3s
|
5, 3
|
5:3
|
├──┼──┼──┼─┼──┼──┼─┤
|
5L 2s (diatonic)
|
3, 2
|
3:2
|
├┼─┼┼─┼┼─┼─┼┼─┼┼─┼─┤
|
7L 5s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 12\19 and 7\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼──────┤
|
1L 1s
|
12, 7
|
12:7
|
├────┼──────┼──────┤
|
2L 1s
|
7, 5
|
7:5
|
├────┼────┼─┼────┼─┤
|
3L 2s
|
5, 2
|
5:2
|
├──┼─┼──┼─┼─┼──┼─┼─┤
|
3L 5s (checkertonic)
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┼─┼┼─┼─┼─┤
|
8L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 13\19 and 6\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼─────┤
|
1L 1s
|
13, 6
|
13:6
|
├──────┼─────┼─────┤
|
1L 2s
|
7, 6
|
7:6
|
├┼─────┼─────┼─────┤
|
3L 1s
|
6, 1
|
6:1
|
├┼┼────┼┼────┼┼────┤
|
3L 4s (mosh)
|
5, 1
|
5:1
|
├┼┼┼───┼┼┼───┼┼┼───┤
|
3L 7s (sephiroid)
|
4, 1
|
4:1
|
├┼┼┼┼──┼┼┼┼──┼┼┼┼──┤
|
3L 10s
|
3, 1
|
3:1
|
├┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┤
|
3L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 14\19 and 5\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼────┤
|
1L 1s
|
14, 5
|
14:5
|
├────────┼────┼────┤
|
1L 2s
|
9, 5
|
9:5
|
├───┼────┼────┼────┤
|
3L 1s
|
5, 4
|
5:4
|
├───┼───┼┼───┼┼───┼┤
|
4L 3s (smitonic)
|
4, 1
|
4:1
|
├──┼┼──┼┼┼──┼┼┼──┼┼┤
|
4L 7s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┤
|
4L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 15\19 and 4\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼───┤
|
1L 1s
|
15, 4
|
15:4
|
├──────────┼───┼───┤
|
1L 2s
|
11, 4
|
11:4
|
├──────┼───┼───┼───┤
|
1L 3s
|
7, 4
|
7:4
|
├──┼───┼───┼───┼───┤
|
4L 1s
|
4, 3
|
4:3
|
├──┼──┼┼──┼┼──┼┼──┼┤
|
5L 4s (semiquartal)
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┤
|
5L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 16\19 and 3\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼──┤
|
1L 1s
|
16, 3
|
16:3
|
├────────────┼──┼──┤
|
1L 2s
|
13, 3
|
13:3
|
├─────────┼──┼──┼──┤
|
1L 3s
|
10, 3
|
10:3
|
├──────┼──┼──┼──┼──┤
|
1L 4s
|
7, 3
|
7:3
|
├───┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
4, 3
|
4:3
|
├┼──┼──┼──┼──┼──┼──┤
|
6L 1s (archaeotonic)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┤
|
6L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 17\19 and 2\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼─┤
|
1L 1s
|
17, 2
|
17:2
|
├──────────────┼─┼─┤
|
1L 2s
|
15, 2
|
15:2
|
├────────────┼─┼─┼─┤
|
1L 3s
|
13, 2
|
13:2
|
├──────────┼─┼─┼─┼─┤
|
1L 4s
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
9L 1s (sinatonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 18\19 and 1\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼┤
|
1L 1s
|
18, 1
|
18:1
|
├────────────────┼┼┤
|
1L 2s
|
17, 1
|
17:1
|
├───────────────┼┼┼┤
|
1L 3s
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┤
|
1L 4s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|