77ed7/3
Jump to navigation
Jump to search
Prime factorization
7 × 11
Step size
19.0503¢
Octave
63\77ed7/3 (1200.17¢) (→9\11ed7/3)
Twelfth
100\77ed7/3 (1905.03¢)
Consistency limit
8
Distinct consistency limit
8
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 76ed7/3 | 77ed7/3 | 78ed7/3 → |
77 equal divisions of 7/3 (abbreviated 77ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 77 equal parts of about 19.1 ¢ each. Each step represents a frequency ratio of (7/3)1/77, or the 77th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.1 | |
2 | 38.1 | |
3 | 57.2 | 30/29, 31/30, 32/31 |
4 | 76.2 | 23/22, 24/23 |
5 | 95.3 | 19/18, 37/35 |
6 | 114.3 | 16/15, 31/29 |
7 | 133.4 | |
8 | 152.4 | 12/11, 35/32 |
9 | 171.5 | 21/19, 32/29 |
10 | 190.5 | 29/26, 39/35 |
11 | 209.6 | 26/23, 35/31 |
12 | 228.6 | 8/7 |
13 | 247.7 | 15/13 |
14 | 266.7 | 7/6 |
15 | 285.8 | 33/28 |
16 | 304.8 | 31/26, 37/31 |
17 | 323.9 | 35/29 |
18 | 342.9 | 28/23, 39/32 |
19 | 362 | 16/13, 37/30 |
20 | 381 | |
21 | 400.1 | 29/23, 39/31 |
22 | 419.1 | 14/11, 37/29 |
23 | 438.2 | 9/7 |
24 | 457.2 | 13/10, 30/23 |
25 | 476.3 | 29/22 |
26 | 495.3 | 4/3 |
27 | 514.4 | 31/23, 35/26, 39/29 |
28 | 533.4 | 34/25 |
29 | 552.5 | 11/8 |
30 | 571.5 | 32/23, 39/28 |
31 | 590.6 | 31/22, 38/27 |
32 | 609.6 | 27/19, 37/26 |
33 | 628.7 | 23/16 |
34 | 647.7 | 16/11 |
35 | 666.8 | 25/17 |
36 | 685.8 | |
37 | 704.9 | 3/2 |
38 | 723.9 | 35/23 |
39 | 743 | 20/13, 23/15 |
40 | 762 | 14/9, 31/20 |
41 | 781.1 | 11/7 |
42 | 800.1 | |
43 | 819.2 | |
44 | 838.2 | 13/8 |
45 | 857.3 | 23/14 |
46 | 876.3 | |
47 | 895.4 | |
48 | 914.4 | 39/23 |
49 | 933.5 | 12/7 |
50 | 952.5 | 26/15, 33/19 |
51 | 971.6 | 7/4 |
52 | 990.6 | 23/13, 39/22 |
53 | 1009.7 | |
54 | 1028.7 | 29/16, 38/21 |
55 | 1047.8 | 11/6 |
56 | 1066.8 | 37/20 |
57 | 1085.9 | 15/8 |
58 | 1104.9 | 36/19 |
59 | 1124 | 23/12 |
60 | 1143 | 29/15, 31/16 |
61 | 1162.1 | |
62 | 1181.1 | |
63 | 1200.2 | 2/1 |
64 | 1219.2 | |
65 | 1238.3 | |
66 | 1257.3 | 31/15 |
67 | 1276.4 | 23/11 |
68 | 1295.4 | 19/9 |
69 | 1314.5 | 32/15 |
70 | 1333.5 | |
71 | 1352.6 | 24/11, 35/16 |
72 | 1371.6 | |
73 | 1390.7 | 29/13 |
74 | 1409.7 | |
75 | 1428.8 | 16/7 |
76 | 1447.8 | 30/13 |
77 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.17 | +3.07 | +0.33 | -4.97 | +3.24 | +3.07 | +0.50 | +6.14 | -4.81 | +1.64 | +3.41 |
Relative (%) | +0.9 | +16.1 | +1.8 | -26.1 | +17.0 | +16.1 | +2.6 | +32.3 | -25.2 | +8.6 | +17.9 | |
Steps (reduced) |
63 (63) |
100 (23) |
126 (49) |
146 (69) |
163 (9) |
177 (23) |
189 (35) |
200 (46) |
209 (55) |
218 (64) |
226 (72) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.81 | +3.24 | -1.90 | +0.67 | -9.04 | +6.31 | +7.96 | -4.64 | +6.14 | +1.81 | +1.05 |
Relative (%) | -9.5 | +17.0 | -10.0 | +3.5 | -47.4 | +33.1 | +41.8 | -24.4 | +32.3 | +9.5 | +5.5 | |
Steps (reduced) |
233 (2) |
240 (9) |
246 (15) |
252 (21) |
257 (26) |
263 (32) |
268 (37) |
272 (41) |
277 (46) |
281 (50) |
285 (54) |