76ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
← 75ed7/3 76ed7/3 77ed7/3 →
Prime factorization 22 × 19
Step size 19.3009¢ 
Octave 62\76ed7/3 (1196.66¢) (→31\38ed7/3)
Twelfth 99\76ed7/3 (1910.79¢)
Consistency limit 2
Distinct consistency limit 2

76 equal divisions of 7/3 (abbreviated 76ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 76 equal parts of about 19.3 ¢ each. Each step represents a frequency ratio of (7/3)1/76, or the 76th root of 7/3.

While it fails to accurately represent the 3rd, 5th, or 7th harmonics, it inherits great approximations of the 11th, 13th, 17th, and 19th harmonics from its cousin 197edt, notable for its strong representation of the no-twos, no-fives JI subgroup. 76ed7/3 additionally provides an equave stretch appropriate for producing, at the cost of a flat tendency for most well-represented prime harmonics as well as the 9th harmonic, a passable approximation to 5/3 and interesting approximations to many higher primes; however, 76ed7/3 should also be noted for the exceptional quality of its approximation to 11/9, inherited from 38ed7/3, which is a mere 0.0088 cents off from just. Its natural subgroup in the 19-limit is 7/3.9.11.13.15.17.19, but this can extend to include higher primes, especially 29 and 31.


Approximation of prime harmonics in 76ed7/3
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) -3.34 +8.84 -6.98 +8.84 -1.62 -1.31 -2.52 -2.07 -4.71 -0.70 -0.35 +2.16 -1.85 -7.10 -6.68
Relative (%) -17.3 +45.8 -36.2 +45.8 -8.4 -6.8 -13.0 -10.7 -24.4 -3.6 -1.8 +11.2 -9.6 -36.8 -34.6
Steps
(reduced)
62
(62)
99
(23)
144
(68)
175
(23)
215
(63)
230
(2)
254
(26)
264
(36)
281
(53)
302
(74)
308
(4)
324
(20)
333
(29)
337
(33)
345
(41)
Approximation of odd harmonics in 76ed7/3
Harmonic 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Error Absolute (¢) +8.84 -6.98 +8.84 -1.63 -1.62 -1.31 +1.86 -2.52 -2.07 -1.63 -4.71 +5.34 +7.21 -0.70 -0.35
Relative (%) +45.8 -36.2 +45.8 -8.4 -8.4 -6.8 +9.6 -13.0 -10.7 -8.4 -24.4 +27.7 +37.4 -3.6 -1.8
Steps
(reduced)
99
(23)
144
(68)
175
(23)
197
(45)
215
(63)
230
(2)
243
(15)
254
(26)
264
(36)
273
(45)
281
(53)
289
(61)
296
(68)
302
(74)
308
(4)

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 19.301
2 38.602
3 57.903 29/28, 30/29, 31/30
4 77.204 23/22
5 96.505 37/35
6 115.806 31/29
7 135.107
8 154.407
9 173.708 31/28
10 193.009 19/17
11 212.31 26/23, 35/31
12 231.611
13 250.912 15/13, 22/19
14 270.213 7/6
15 289.514 13/11
16 308.815 37/31
17 328.116 23/19, 29/24, 35/29
18 347.417
19 366.718
20 386.019 5/4
21 405.32 24/19
22 424.621 32/25, 37/29
23 443.921 22/17, 31/24
24 463.222 17/13, 30/23
25 482.523 37/28
26 501.824
27 521.125 23/17
28 540.426 26/19
29 559.727
30 579.028
31 598.329 24/17
32 617.63
33 636.931
34 656.232 19/13, 35/24
35 675.533 34/23
36 694.834
37 714.135
38 733.435 26/17, 29/19
39 752.736 17/11, 37/24
40 772.037 25/16
41 791.338 30/19
42 810.639 8/5
43 829.94
44 849.241 31/19
45 868.542 38/23
46 887.843
47 907.144
48 926.445 29/17
49 945.746 19/11
50 965.047
51 984.348 23/13, 30/17
52 1003.649
53 1022.949
54 1042.25 31/17
55 1061.551 24/13
56 1080.852 28/15
57 1100.153
58 1119.454
59 1138.755 29/15
60 1158.056
61 1177.357
62 1196.658 2/1
63 1215.959
64 1235.26
65 1254.561 31/15
66 1273.862 23/11
67 1293.163
68 1312.463
69 1331.764
70 1351.065 24/11
71 1370.366
72 1389.667 29/13, 38/17
73 1408.968
74 1428.269
75 1447.57 30/13
76 1466.871 7/3